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Chapter 5

CS4: Fatigue Assessment in
Nuclear Piping

5.1 From college theory to an actual engineering problem

First of all, please take this text as a written chat between you an me, i.e. an aver-
age engineer that has already taken the journey from college to performing actual
engineering works using finite element analysis and has something to say about it.
Picture yourself in a coffee bar, talking and discussing concepts and ideas with me.
Maybe needing to go to a blackboard (or notepad?). Even using a tablet to illustrate
some three-dimensional results. But always as a chat between colleagues.

Please also note that I am not a mechanical engineer, although I shared many
undergraduate courses with some of them. I am a nuclear engineer with a strong
background inmathematics and computer programming. I went to college between
2002 and 2008. Probably a lot of things have changed since then—at least that is
what these “millennial” guys and girls seem to be boasting about—but chances are
we all studied solid mechanics and heat transfer with a teacher using a piece of
chalk on a blackboard while we as students wrote down notes with pencils on
paper sheets. And there is really not much that one can do with pencil and paper
regarding mechanical analysis. Any actual case worth the time of an engineer
needs to be more complex than an ideal canonical case with analytical solution.

Whether you are a student or a seasoned engineer with many years of experi-
ence, youmight recall from first year physics courses the introduction of the simple
pendulum as a case study (fig. 5.1a). You learned that the period does not depend on
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the hanging mass because the weight and the inertia exactly cancelled each other.
Also, that Galileo said (and Newton proved) that for small oscillations the period
does not even depend on the amplitude. Someone showed you why it worked this
way: because if sin θ ≈ θ then the motion equations converge to an harmonic os-
cillator. It might have been a difficult subject for you back in those days when you
were learning physics and calculus at the same time.

But it was probably after college, say when you took your first son to a swing
on a windy day (fig. 5.1b), that you were faced with a real pendulumworth your full
attention. The very same distance between what I imagined studying a pendulum
was and what I saw that day at the swing (namely that the period does depend on
the hanging mass) is the same distance between the mechanical problems studied
in college and the actual cases encountered during a professional engineer’s life-
time (fig. 5.2). In this regard, I am referring only to technical issues. The part of
dealing with clients, colleagues, bosses, etc. which is definitely not taught in engi-
neering schools (you can get a heads up in business schools, but again it would be
a theoretical pendulum) is way beyond the scope of both this article and my own
capacities.

(a) Simple pendulum (b) Real pendulum

Figure 5.1: A simple pendulum from college physics courses and a real-life pendulum. Hint: the swing’s
period does depend on the hanging mass as shown in https://youtu.be/Q-lKK4A2OzA

Again, take all this information as coming from a fellow that has already taken
such a journey from college’s pencil and paper to real engineering cases involving
complex numerical calculations. And developing, in the meantime, both an actual
working finite-element back-end and front-end from scratch.
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5.1. FROM COLLEGE THEORY TO AN ACTUAL ENGINEERING PROBLEM

(a) College pipe (b) Real-life pipe

Figure 5.2: An infinitely-long pressurised thick pipe as taught in college and an isometric drawing of a
sec on of a real-life piping system. The details of the isometric are not important individually but they
are included to emphasize the fact that a real engineering drawing is far more complex and has farmore
informa on than what a professor can draw in a class blackboard.

5.1.1 Tips and tricks

There are some useful tricks that come handy when trying to solve a mechanical
problem. Throughout this text, I will try to tell you some of them.

One of the most important ones to use your imagination. You will need a lot of
imagination to “see” what it is actually going on when analysing an engineering
problem. This skill comes from my background in nuclear engineering where I had
no choice but to imagine a positron-electron annihilation or an spontaneous fission.
But in mechanical engineering, it is likewise important to be able to imagine how
the loads “press” one element with the other, how the material reacts depending
on its properties, how the nodal displacements generate stresses (both normal and
shear), how results converge, etc.

This journey will definitely need your imagination. We will peek a little bit into
equations, numbers, plots, schematics, CAD geometries, 3D views, etc. Still, when
the theory says “thermal expansion produces normal stresses” you have to picture
in your head three little arrows pulling away from the same point in three direc-
tions, or whatever mental picture you have about what you understand thermally-
induced stresses are. What comes to your mind when someone says that out of
the nine elements of the stress tensor (sec. 5.3.1) there are only six that are inde-
pendent? Whatever it is, try to practice that kind of graphical thoughts with every
new concept. Nevertheless, there will be particular locations of the text where
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imagination will be most useful. I will bring the subject up then and again.
Another heads up is that we will be digging into some mathematics. Probably

they would be simple and you would deal with them very easily. But chances are
you do not like equations. No problem! Just ignore them for now. Read the text
skipping them, it should work as well. Anyhow, here comes another experience
tip: keep exercising mathematics. You have used differences of squares in high
school, didn’t you?. You know (or at least knew) how to integrate by parts. Do
you remember what Laplace transforms are used for? Once in a while, perform a
division of polynomials using Ruffini’s rule. Or compute the second derivative of
the quotient of two functions. Whatever. It should be like doing crosswords on the
newspaper. Grab those old physics college books and solve the exercises at the end
of each chapter. All the effort will pay off later on.

One final comment: throughout the text I will be referring to “your favourite
FEM program.” I bet you do have one. Mine is CAEplex (it works on top of Fino,
which is free and open source). We will be using it to perform some tests and play
a little bit. And we will also use it to think about what it means to use a FEM
program to generate results that will eventually end up in a written project with
your signature. Keep that in mind.

5.2 Case study: reactors, pipes and fatigue

Piping systems in sensitive industries like nuclear or oil & gas should be designed
and analysed following the recommendations of an appropriate set of codes and
norms, such as the ASME Boiler and Pressure Vessel Code. This code of practice
was born during the late 19th century, before finite-element methods for solving
partial differential equations were even developed. And much longer before they
were available for the general engineering community. Therefore, much of the code
assumes design and verification is not necessarily performed numerically but with
paper and pencil (yes, like in college). However, it still provides genuine guidance
in order to ensure pressurised systems behave safely and properly without need-
ing to resort to computational tools. Combining finite-element analysis with the
ASME code gives the cognisant engineer a unique combination of tools to tackle
the problem of designing and/or verifying pressurised piping systems.

In the years following Enrico Fermi’s demonstration that a self-sustainable fis-
sion reaction chain was possible (actually, in fact, after WWII was over), people
started to build plants in order to transform the energy stored within the atoms
nuclei into usable electrical power. They quickly reached the conclusion that high-
pressure heat exchangers and turbines were needed. So they started to follow codes
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of practise like the aforementioned ASME B&PVC. They also realised that some re-
quirements did not fit the needs of the nuclear industry. But instead of writing a
new code from scratch, they added a new chapter to the existing body of knowl-
edge: the celebrated ASME Section III.

After further years passed by, engineers (probably the same people that forked
section III) noticed that fatigue in nuclear power plants was not exactly the same as
in other piping systems. Therewere some environmental factors directly associated
to the power plant that were not taken into account by the regular ASME code.
Again, instead of writing a new code from scratch, people decided to add correction
factors to the previously-amended body of knowledge. This is how (sometimes)
knowledge evolves, and it is this kind of complexities that engineers are faced with
during their professional lives. We have to admit it, it would be a very difficult task
to re-write everything from scratch every time something changes.

Figure 5.3: Three-dimensional CAD model for the piping system of fig. 5.2b

5.2.1 Nuclear reactors

In each of the countries that have at least one nuclear power plant there exists a
national regulatory body who is responsible for allowing the owner to operate the
reactor. These operating licenses are time-limited, with a range that can vary from
25 to 60 years, depending on the design and technology of the reactor. Once expired,
the owner might be entitled to an extension, which the regulatory authority can
accept provided it can be shown that a certain (and very detailed) set of safety
criteria are met. One particular example of requirements is that of fatigue in pipes,
especially those that belong to systems that are directly related to the reactor safety.
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5.2.2 Pressurised pipes

How come that pipes are subject to fatigue? Well, on the one hand and without
getting into many technical details, the most common nuclear reactor design uses
liquid water as coolant and moderator. On the other hand, nuclear power plants
cannot by-pass the thermodynamics of the Carnot cycle, and in order to maximise
the efficiency of the conversion of the energy stored in the uranium nuclei into elec-
tricity we need to reach temperatures as high as possible. So, if we want to have
liquid water in the core as hot as possible, we need to increase the pressure. The
limiting temperature and pressure are given by the critical point of water, which
is around 374ºC and 22 MPa. It is therefore expected to have temperatures and
pressures near those values in many systems of the plant, especially in the primary
circuit and those that directly interact with it, such as pressure and inventory con-
trol system, decay power removal system, feedwater supply system, emergency
core-cooling system, etc.

Nuclear power plants are not always working at 100% of their maximum power
capacity. They need to be maintained and refuelled, they may undergo operational
(and some incidental) transients, they might operate at a lower power due to load
following conditions, etc. These transient cases involve changes both in temper-
atures and in pressures that the pipes are subject to, which in turn give rise to
changes in the stresses within the pipes. As the transients are postulated to occur
cyclically during a number of times during the life-time of the plant (plus its ex-
tension period), mechanical fatigue in these piping systems may arise, especially
at the interfaces between materials with different thermal expansion coefficients.

An important part of the analysis that almost always applies to nuclear power
plants but usually also to other installations is the consideration of a possible seis-
mic event. Given a postulated design earthquake, both the civil structures and the
piping system itself need to be able to withstand such a load, even if it occurs at the
moment of highest mechanical demand during one of the operational transients.

5.2.3 Fatigue

Mechanical systems can fail due to a wide variety of reasons. The effect known as
fatigue can create, migrate and grow microscopic cracks at the atomic level, called
dislocations. Once these cracks reach a critical size, then the material fails catas-
trophically even under stresses much lower than the tensile strength limits. There
are not complete mechanistic models from first principles which can be used in gen-
eral situations, and those that exist are very complex and hard to use. There are two
main ways to approach practical fatigue assessment problems using experimental
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data very much like the Hooke’s Law experiment:

1. stress life, or
2. strain life

The first one is suitable for cases where the loads are nowhere near the yield
stress of the material. When plastic deformation is expected to occur, strain-life
methods ought to be employed.

For the case study, as the loads come principally from operational loads, the
ASME stress-life approach should be used. The stress amplitude of a periodic cycle
can be related to the number of cycles where failure by fatigue is expected to occur.
For each material, this dependence can be computed using normalised tests and a
family of “fatigue curves” like the one depicted in fig. 5.4 (also called S-N curve)
for different temperatures can be obtained.

Figure 5.4: A fa gue or S-N curve for two steels.

It should be noted that the fatigue curves are obtained in a particular load case,
namely purely-periodic and one-dimensional, which cannot be directly generalised
to other three-dimensional cases. Also, any real-life case will be subject to a mix-
ture of complex cycles given by a stress time history and not to pure periodic condi-
tions. The application of the curve data implies a set of simplifications and assump-
tions that are translated into different possible “rules” for composing real-life cycles.
There also exist two safety factors which increase the stress amplitude and reduce
the number of cycles respectively. All these intermediate steps render the analysis
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of fatigue into a conservative computation scheme. Therefore, when a fatigue as-
sessment performed using the fatigue curve method arrives at the conclusion that
“fatigue is expected to occur after ten thousand cycles” what it actually means is
“we are sure fatigue will not occur before ten thousand cycles, yet it may not occur
before one hundred thousand or even more.”

5.3 Solid mechanics, or what we are taught at college

So, let us start our journey. Our starting place: undergraduate solid mechanics
courses. Our goal: to obtain the internal state of a solid subject to a set of movement
restrictions and loads (i.e. to solve the solid mechanics problem). Our first step:
Newton’s laws of motion. For our purposes, we can recall them here like this:

1. a solid is in equilibrium if it is not moving in at least one inertial coordinate
system,

2. in order for a solid not to move, the sum of all the forces ought to be equal
to zero, and

3. for every external load there exists an internal reaction with the same mag-
nitude but opposite direction.

We have to accept that there is certain intellectual beauty when complex stuff
can be expressed in such simple terms. Yet, from now on, everything can be com-
plicated at will. We can take the mathematical path like D’Alembert and his virtual
displacements ideas (in his mechanical treatise, he brags that he does not need to
use a single figure throughout the book). Or we can go graphical following Cul-
mann. Or whatever other logic reasoning to end up with a set of actual equations
which we need to solve in order to obtain engineering results.

5.3.1 The stress tensor

In any case, what we should understand (and imagine) is that external forces lead
to internal stresses. And in any three-dimensional body subject to such external
loads, the best way to represent internal stresses is through a 3 × 3 stress tensor.
This is the first point in which we should not fear mathematics. Trust me, it will
pay back later on.

Does the term tensor scare you? It should not. A tensor is a general mathemat-
ical object and might get complex when dealing with many dimensions (as those
encountered inweird stuff like string theory), but wewill stick here to second-order
tensors. They are slightly more complex than a vector, and I assume you are not
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afraid of vectors, are you? If you recall fresh-year algebra courses, a vector some-
how generalises the idea of a scalar in the following sense: a given vector v can be
projected into any direction n to obtain a scalar p. We call this scalar p the “pro-
jection” of the vector v in the direction n. Well, a tensor can be also projected into
any direction n. The difference is that instead of a scalar, a vector is now obtained.

Let me introduce then the three-dimensional stress tensor (a.k.a Cauchy tensor): σx τxy τxz

τyx σy τyz

τzx τzy σz


It looks (and works) like a regular 3 × 3 matrix. Some brief comments about it:

• The σs are normal stresses, i.e. they try to stretch or tighten the material.
• The τs are shear stresses, i.e. they try to twist the material.
• Due to rotational equilibrium requirements the conjugate shear stresses
should be equal: τxy = τyx, τyz = τzy , and τzx = τxz . Therefore, the stress
tensor is symmetric i.e. there are only six independent elements.

• The elements of the tensor depend on the orientation of the coordinate sys-
tem.

• There exists a particular coordinate system inwhich the stress tensor is diago-
nal, i.e. all the shear stresses are zero. In this case, the three diagonal elements
are called the principal stresses, which happen to be the three eigenvalues of
the stress tensor. The basis of the coordinate system that renders the tensor
diagonal are the eigenvectors.

What does this all have to do with mechanical engineering? Well, once we
know what the stress tensor is for every point of a solid, in order to obtain the
internal forces per unit area acting in a plane passing through that point and with
a normal given by the direction n, all we have to do is “project” the stress tensor
through n. In plain simple words:

If you can compute the stress tensor at each point of your geometry,
then… Congratulations! You have solved the solid mechanics problem.

5.3.2 An infinitely-long pressurised pipe

Let us proceed to our second step, and consider the infinite pipe subject to uniform
internal pressure already introduced in fig. 5.2a. Actually, we are going to solve
the mechanical problem on an infinite hollow cylinder, which looks like pipe. This
case is usually tackled in college courses, and chances are you already solved it. In
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fact, the first (and simpler) problem is the “thin cylinder problem.” Then, the “thick
cylinder problem” is introduced (the one we solve below), which is slightly more
complex. Nevertheless, it has an analytical solution.1 For the present case, let us
consider an infinite pipe (i.e. a hollow cylinder) of internal radius a and external
radius b with uniform mechanical properties—Young’s modulus E and Poisson’s
ratio ν—subject to an internal uniform pressure p.

What follows is more or less what we are taught in school: some equations
with a brief explanation of the results. And then we move on to the next subject.

5.3.2.1 Displacements

Remember that when any solid body is subject to external forces, it has to react
in such a way to satisfy the equilibrium conditions. The way solids do this is by
deforming a little bit in such a way that the whole body acts as a compressed (or
elongated) spring balancing the load. So it is worth to ask how a pressurised pipe
deforms to counteract the internal pressure p.

• There are no longitudinal displacements ul because the pipe is infinite in the
axial direction.

• There are no azimuthal displacements uθ because the pipe is fully symmetric
around the axis.

• There are only radial displacements ur and they depend only on the radial
coordinate r and not on the axial position z or on the azimuthal angle θ.
These displacements are

ur(r) = p · 1 + ν

E
· a2

b2 − a2 ·
[
1 − 2ν + b2

r2

]
· r

What does this mean? Well, that overall the whole pipe expands a little bit
radially with the inner face being displaced more than the external surface (use
your imagination!). How much?

1. linearly with the pressure, i.e. twice the pressure means twice the displace-
ment, and

2. inversely proportional to the Young’s Modulus E divided by 1 + ν, i.e. the
more resistant the material, the less radial displacements.

1Adetailed analysis of the analytical solution and how results obtainedwith finite elements converge
with respect to the mesh size can be found in the report “On convergence of linearized stresses in an
infinite pipe computed using the finite element method.” See sec. 5.9.1.
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That is how an infinite pipe withstands internal pressure. And that is what we
are taught in college, which is actually true by the way!

5.3.2.2 Stresses

As the solid is deformed, that is to say that different parts are relatively displaced
one from another, strains and stresses appear. When seen from a cylindrical coor-
dinate system, the stress tensor (recall sec. 5.3.1) has these features.

• There are no shear stresses as there is no bending due to the fact that the pipe
is infinite (so it cannot bend in the axial direction) and azimuthally symmetric
(there is no particular direction so circles must remain circles).

• The normal stresses depend only on the radial coordinate r and are

– the radial stress σr(r) = p·a2

b2−a2 ·
(

1 − b2

r2

)
– the azimuthal (or hoop) stress σθ(r) = p·a2

b2−a2 ·
(

1 + b2

r2

)
, and

– the longitudinal (or axial) stress σl(r) = 2ν · p·a2

b2−a2

We can note that

1. The stresses do not depend on the mechanical properties E and ν of the
material (the displacements do).

2. All the stresses are linear with the pressure p, i.e. twice the pressure means
twice the stress.

3. The axial stress is uniform and does not depend on the radial coordinate r.
4. As the stress tensor is diagonal, these three stresses happen to also be the

principal stresses.

That is all what we can say about an infinite pipe with uniform material prop-
erties subject to an uniform internal pressure p. If

• the pipe was not infinite (say any real pipe that has to start and end some-
where), or

• the cross-section of the pipe was not constant along the axis (say there is an
elbow or even a reduction), or

• there was more than one pipe (say there is a tee), or
• the material properties were not uniform (say the pipe does not have an uni-
form temperature but a distribution), or

• the pressurewas not uniform (say because there is liquid inside and its weight
cannot be neglected),
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then we would no longer be able to fully solve the problem with paper and pencil
and draw all the conclusions above. However, at least we have a start because we
know that if the pipe is finite but long enough or the temperature is not uniform
but almost, we still can use the analytical equations as approximations. After all,
Enrico Fermi managed to reach criticality in the Chicago Pile-1 with paper and
pencil. But what happens if the pipe is short, there are branches and temperature
changes like during a transient in a nuclear reactor? Well, that is why we have
finite elements. And this is where what we learned at college pretty much ends.

5.4 Finite elements, or solving actual problems

Besides infinite pipes (both thin and thick), spheres and a couple of other geome-
tries, there are no other cases for which we can obtain analytical expressions for
the elements of the stress tensor. To get results for a solid with real engineering
interest, we need to use numerical methods to solve the equilibrium equations. It is
not that the equations are hard per se. It is that the mechanical parts we engineers
like to design (which are of course more complex than cylinders and spheres) are
so intricate that render simple equations into monsters which are unsolvable with
pencil and paper. Hence, finite elements enter into the scene.

5.4.1 The name of the game

But before turning our attention directly into finite elements (and leaving college,
at least undergraduate) it is worth some time to think about other alternatives. Are
we sure we are tackling your problems in the best possible way? I mean, not just
engineering problems. Do we take a break, step back for a while and see the whole
picture looking at all the alternatives so we can choose the best cost-effective one?

There are literally dozens of ways to numerically solve the equilibrium equa-
tions, but for the sake of brevity let us take a look at the three most famous ones.
Coincidentally, they all contain the word “finite” in their names. We will not dig
into them, but it is nice to know they exist. We might use

1. Finite differences
2. Finite volumes
3. Finite elements

Before proceeding, I would like to make two comments about common nomen-
clature. The first one is that if we exchanged the words “volumes” and “elements”
in all the written books and articles, nobody would notice the difference. There is
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nothing particular in both theories that can justify why FVM use “volumes” and
FEM use “elements”. Actually volumes and elements are the same geometric con-
structions. As far as I know, the names were randomly assigned.

The second one is more philosophical and refers to the word “simulation” which
is often used to refer to solving a problem using a numerical scheme such as the
finite element method. I am against at using this word for this endeavour. The term
simulation has a connotation of both “pretending” and “faking” something, that is
definitely not what we are doing when we solve an engineering problemwith finite
elements. Sure, there are some cases in which we simulate, such as using theMonte
Carlo method (originally used by Fermi as an attempt to understand how neutrons
behave in the core of nuclear reactors). But when solving deterministic mechanical
engineering problems I would rather say “modelling” than “simulation.”

5.5 Piping in nuclear rectors

So we need to address the issue of fatigue in nuclear reactor pipes that

1. are not infinite and have cross-section changes, branches, valves, etc.
2. are made of different materials,
3. are fixed at different locations through piping supports,
4. are subject to

a. pressure transients,
b. heat transients, and
c. seismic loads.

As a nuclear engineer, I learned (theoretically in college but practically after
college) that there are some models that let you see some effects and some that
let you see other effects (please say “modelling” not “simulation.”). And even if, in
principle, it is true that more complex models should allow you compute more stuff,
they definitely might show you nothing at all if the model is so big and complex
that it does not fit into a computer (say because it needs hundreds of gigabytes of
RAM to run) or because it takes more time to compute than you may have before
the final report is expected.

First of all, we should note that we need to solve

i. the heat transfer equation to get the temperature distribution within the
pipes,

ii. the natural frequencies and oscillation modes of the piping system to obtain
the pseudo-accelerations generated by the design earthquake, and finally
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iii. the elastic problem to obtain the stress tensor needed to compute the alter-
nating stress to enter into the fatigue curve.

So for each time t of the operational transient, the pipes are subject to

a. an uniform internal pressure pi(t) that depends on time,
b. a non-uniform internal temperature Ti(t) that gives rise to a non-trivial time-

dependent temperature distribution T (x, t) in the bulk of the pipes, and
c. internal distributed forces f = ρ · a at those times where the design earth-

quake is assumed to occur.

5.5.1 Thermal transient

Let us invoke our imagination once again. Assume in one part of the transients the
temperature of the water inside the pipes falls from say 300ºC down to 100ºC in a
couple of minutes, stays at 100ºC for another couple of minutes and then gets back
to 300ºC. The temperature within the bulk of the pipes changes as times evolves.
The internal wall of the pipes follow the transient temperature (it might be exactly
equal or close to it through the Newton’s law of cooling). If the pipe was in a state
of uniform temperature, the ramp in the internal wall will start cooling the bulk
of the pipe creating a transient thermal gradient. Due to thermal inertia effects,
the temperature can have a non-trivial dependence when the ramps start or end
(think about it!). So we need to compute a real transient heat transfer problem
with convective boundary conditions because any other usual tricks like computing
a sequence of steady-state computations for different times would not be able to
recover these non-trivial distributions.

Remember the main issue of the fatigue analysis in these systems is to analyse
what happens around the location of changes of piping classes where different ma-
terials (i.e. different expansion coefficients) are present, potentially causing high
stresses due to differential thermal expansion (or contraction) under transient con-
ditions. Therefore, even though we are dealing with pipes we cannot use beam or
circular shell elements, because we need to take into account the three-dimensional
effects of the temperature distribution along the pipe thickness. And even if we
could, there are some tees that connect pipes with different nominal diameters that
have a non-trivial geometry, such as the weldolet-type junction shown in figs. 5.5a,
5.5b. In this case, there are a number of SCLs (Stress Classification Lines) that go
through the pipe’s thickness at both sides of the material interface as illustrated
in fig. 5.6. It is in these locations that fatigue is to be evaluated.

On the one hand, a reasonable number of nodes (it is the number of nodes that
defines the problem size, not the number of elements) in order to get a decent grid
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(a) Overall view

(b) Unstructured tetrahedra-based grid

Figure 5.5: CAD model of a piping system with a 3/4-inch weldolet-type fork (stainless steel) from a
main 12-inch pipe (carbon steel)
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Figure 5.6: Loca on of six SCLs defined to analyse fa gue around a junc on.

is around 200k for each system. On the other hand, solving a couple of dozens of
transient heat transfer problems (which we cannot avoid due to the large thermal
inertia of the pipes) during a few thousands of seconds over a couple hundred of
thousands of nodes might take more time and storage space to hold the results than
we might expect.

There is a wonderful essay by Isaac Asimov called “The Relativity of Wrong”
where he introduces the idea that even if something cannot be computed exactly,
there are different levels of error. For instance, believing that the Earth is a sphere
is less wrong than believing that the Earth is flat, but wrong nonetheless, since it
really deviates from a perfect sphere and resembles more an oblate spheroid.

We can then merge this idea by Asimov with an adapted version of the Saint-
Venant’s principle and note that the detailed transient temperature distribution is
important only around the location of the SCLs. We can then make an engineering
approximation and

1. compute the transient thermal problem using a reduced mesh around the
SCLs, and

2. assume the part of the full systemwhich is not contained in the reducedmesh
is at an uniform (though not constant) temperature equal to the average of
the inner and outer temperatures at each side of the reduced mesh.
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Figure 5.7: An example case where the SCLs are located around the junc on between stainless-steel
valves and carbon steel pipes at both sides of the material interface in the ver cal plane both at the top
and at the bo om of the pipe.

As an example, let us consider the system depicted in fig. 5.7 where there is a
stainless-carbon steel interface at the discharge of the valves. Instead of solving the
transient heat-conduction problemwith the internal temperature of the pipes equal
to the temperature of the water in the reference transient condition of the power
plant and an external condition of natural convection to the ambient temperature
in the whole mesh, a reduced model consisting of half of one of the two valves
and a small length of the pipes at both the valve inlet and outlet is used. Once
the temperature distribution T̂ (x, t) for each time is obtained in the reduced mesh
(fig. 5.8, which has the origin at the centre of the valve), the actual temperature
distribution T (x, t) is computed by an algebraic generalisation of T̂ (x, t) in the
full coordinate system. As stated above, those locations which are not covered
by the reduced model are generalised with a time-dependent uniform temperature
which is the average of the inner and outer temperatures at the inlet and outlet of
the reduced mesh.

Note that there is no need to have a one-to-one correspondence between the
elements from the reduced mesh with the elements from the original one. Actually,
the reduced mesh contains first-order elements whilst the former has second-order
elements. Also the grid density is different. Nevertheless, the finite-element solver
Fino used to solve both the heat and the mechanical problems, allows to read func-
tions of space and time defined over one mesh and continuously evaluate and use
them into another one even if the two grids have different elements, orders or even
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Figure 5.8: Mesh of half-a-symmetric-valve refined around the interface where the transient heat con-
duc on problem is solved.

dimensions. In effect, in the system from fig. 5.3 the material interface is between
a orifice plate made in stainless steel that is welded to a carbon-steel pipe (fig. 5.9).
The thermal problem can be modelled using a two-dimensional axi-symmetric grid
and then generalised to the full three-dimensional mesh using the algebraic manip-
ulation capabilities provided by Fino (actually by wasora) as shown in fig. 5.9.

5.5.2 Seismic loads

Every nuclear power plant is designed to withstand earthquakes. Of course, not all
plants need the same level of reinforcements. Those built in large quiet plains will
be, seismically speaking, cheaper than those located in geologically active zones.
Keep in mind that all the 54 Japanese nuclear power plants did structurally resist
the 2011 earthquake, and all of the reactors were safely shut down. What actually
happened in Fukushima is that one hour after the main shake, a 14-metre tsunami
splashed on the coast, jumping over the 9-metre defences and flooding the emer-
gency Diesel generators that provided power to the pumps in charge of removing
the remaining decay power from the already-stopped reactor core.

Since the computation of the loads that a certain earthquake gives rise to would
add a significant amount of complexity to this already-complex case study, the de-
tails are skipped. In any case, we need to compute the first natural modes of oscilla-
tion of the piping section under study (fig. 5.10) and then, after some cumbersome
maths, obtain an statically-equivalent load distribution. In effect, fig. 5.11 shows
a sample distribution of acceleration distribution within a certain piping system
which, when multiplied by the density, give a load distribution which is statically
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Figure 5.9: Temperature distribu on for a certain me within the transient computed on a reduced
two-dimensional axi-symmetric mesh modelling half the orifice plate and a length of the carbon pipe
and generalisa on of the temperature to the full three-dimensional grid.

equivalent to the dynamic solicitations created by the earthquake. The ASME code
says that these accelerations ought to be applied twice: once with the original sign
and once with all the elements with the opposite sign, as SRSS “looses signs.” The
application of each of these equivalent loads should last two seconds in the original
time domain.

5.5.3 Linearity (not yet linearisation)

Even though we did not yet discuss it in detail, we want to solve an elastic problem
subject to an internal pressure condition, with a non-uniform temperature distribu-
tion that leads to both thermal stresses and variations in the mechanical properties
of the materials. And as if this was not enough, we want to add during a couple of
seconds a statically-equivalent distributed load arising from a design earthquake.
This last point means that at the transient instant where the stresses (from the fa-
tigue’s point of view) are maximum we have to add the distributed loads that we
computed from the seismic spectra to the other thermal and pressure loads. But we
have a linear elastic problem (well, we still do not have it but we will in sec. 5.7.3),
so we might be tempted to exploit the problem’s linearity and compute all the ef-
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(a) f1 ≈ 30 Hz (b) f2 ≈ 60 Hz

(c) f3 ≈ 70 Hz (d) f4 ≈ 75 Hz

(e) f5 ≈ 100 Hz (f) f6 ≈ 130 Hz

Figure 5.10: First six natural oscilla on modes for a piping sec on between axial supports. Blue-red
colour scale showsmagnitude of deforma on, as compared to the original geometry (grey). Full anima-
ons available online (sec. 5.9.1).
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(a) ax

(b) ay

(c) az

Figure 5.11: Equivalent accelera ons for a certain piping sec on
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fects separately and then sum them up to obtain the whole combination. We may
thus compute just the stresses due to the seismic loads and then add these stresses
to the stresses at any time of the transient, in particular to the one with the highest
ones. After all, in linear problems the result of the sum of two cases is the result of
the sum of the cases, right? Not always.

Let us jump out of our nuclear piping problem and step back into the general
finite-element theory ground for a moment (remember wewere going to jump back
and forth). Assume you want to know how much your dog weighs. One thing you
can do is to weigh yourself (let us say you weigh 81.2 kg), then to grab your dog and
to weigh both yourself and your dog (let us say you and your dog weigh 87.3 kg).
Would you swear your dog weighs 6.1 kg plus/minus the scale’s uncertainty? I
can tell you that the weight of two individual protons and two individual neutrons
in not the same as the weight of an α particle. Would not there be a master-pet
interaction that renders the weighting problem non-linear?

Time for both of us to make an experiment. Grab your favourite FEM program
for the first time (remember mine is CAEplex, which can also be accessed through
Onshape) and create a 1mm × 1mm × 1mm cube. Set any values for the Young’s
Modulus and Poisson ratio as you want. I chose E = 200 GPa and ν = 0.28.
Restrict the three faces pointing to the negative axes to their planes, i.e.

• in face “left” (x < 0), set null displacement in the x direction (u = 0),
• in face “front” (y < 0), set null displacement in the y direction (v = 0),
• in face “bottom” (z < 0), set null displacement in the z direction (w = 0).

Now we are going to create and compare three load cases:2

a. Pure normal loads (https://caeplex.com/p/d8fe)
b. Pure shear loads (https://caeplex.com/p/b494)
c. The combination of A & B (https://caeplex.com/p/9899)

The loads in each cases are applied to the three remaining faces, namely “right”
(x > 0), “back” (y > 0) and “top,” (z > 0). Their magnitude in Newtons are:

“right” “back” “top”
Fx Fy Fz Fx Fy Fz Fx Fy Fz

Case A +10 0 0 0 +20 0 0 0 +30
Case B 0 +15 -15 +25 0 -5 -15 +25 0
Case C +10 +15 -15 +25 +20 -5 -15 +25 +30

2Theprovided links lead to FEA cases which are fully usable directly from theweb browser, i.e. “finite
elements in the cloud.”
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In the first case, the principal stresses are uniform and equal to the three normal
loads. As the forces are in Newton and the area of each face of the cube is 1 mm2,
the usual sorting leads to

σ1A = 30 MPa

σ2A = 20 MPa

σ3A = 10 MPa

In the second case, the principal stresses are not uniform and have a non-
trivial distribution. Indeed, the distribution of σ3 obtained by CAEplex is shown
in fig. 5.12a. Now, if we indeed were facing a fully linear problem then the re-
sults of the sum of two inputs would be equal to the sum of the individual inputs.
And fig. 5.12b, which shows the principal stress 3 of case C is not the result from
case B plus any of the three constants from case A. Had it been, the colour distri-
bution would be exactly the same as the scale goes automatically from the most
negative value in blue to the most positive value in red. And 7+30 ̸= 33. Alas, it
seems that there exists some kind of unexpected non-linearity (the feared master-
pet interaction?) that prevents us from from fully splitting the problem into simpler
chunks.

So what is the source of this unexpected non-linear effect in an otherwise nice
and friendly linear formulation? Well, probably you already know it because after
all it is almost high-school mathematics. But I learned long after college, when I
had to face a real engineering problem and not just back-of-the-envelope pencil-
and-paper trivial exercises.

Recall that principal stresses are the eigenvalues of the stress tensor. And the
fact that in a linear elastic formulation the stress tensor of case C above is the
sum of the individual stress tensors from cases A and B does not mean that their
eigenvalues can be summed (think about it!). Again, imagine the eigenvalues and
eigenvectors of cases A & B. Got it? Good. Now imagine the eigenvalues and
eigenvectors for case C. Should they sum up? No, they should not! Let us make
another experiment, this timewithmatrices usingOctave orwhatever othermatrix-
friendly program you want (try to avoid black boxes as explained in sec. 5.7.1).

First, let us create a 3 × 3 random matrix R and then multiply it by its trans-
pose RT to obtain a symmetric matrix A (recall that the stress tensor from sec. 5.3.1
is symmetric):
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(a) Case B, pure-shear loads

(b) Case C, normal plus shear loads

Figure 5.12: Spa al distribu on of principal stress 3 for cases B and C. If linearity applied, case C would
be equal to case B plus a constant
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octave> R = rand(3); A = R*R'
A =

2.08711 1.40929 1.31108
1.40929 1.32462 0.57570
1.31108 0.57570 1.09657

Do the same to obtain another 3 × 3 symmetric matrix B:

octave> R = rand(3); B = R*R'
B =

1.02619 0.73457 0.56903
0.73457 0.53386 0.37772
0.56903 0.37772 0.53141

Now compute the sum of the eigenvalues first and then the eigenvalues of the
sum:

octave> eig(A)+eig(B)
ans =

0.0075113
0.8248395
5.7674016

octave> eig(A+B)
ans =

0.049508
0.782990
5.767255

Did I convince you? More or less, right? The third eigenvalue seems to fit. Let
us not throw all of our beloved linearity away and dig in further into the subject.
There are still two important issues to discuss which can be easily addressed using
fresh-year linear algebra (remember not to fear maths!). First of all, even though
principal stresses are not linear with respect to the sum they are linear with respect
to pure multiplication. Once more, think what happens to the the eigenvalues and
eigenvectors of a single stress tensor as all its elements are scaled up or down by
a real scalar. They are the same! So, for example, the Von Mises stress (which is a
combination of the principal stresses) of a beam loaded with a force α ·F is α times
the stress of the beam loaded with a force F. Please test this hypothesis by playing
with your favourite FEM solver. Or even better, take a look at the stress invariants
I1, I2 and I3 (you can search online or peek into the source code of Fino, grep for
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the routine called fino_compute_principal_stress()) and see (using paper and
pencil!) how they scale up if the individual elements of the stress tensor are scaled
by a real factor α.

The other issue is that even though in general the eigenvalues of the sum of
two matrices are not the same as the eigenvalues of the matrix sum, there are some
cases when they are. In effect, if two matrices A and B commute, i.e. their product
is commutative

A · B = B · A

then the sums (in plural because there are three eigenvalues) of their eigenvalues
are equal to the eigenvalues of the sums. In order for this to happen, both A and B
need to be diagonalisable using the same basis. That is to say, the diagonalising
matrix P such that P −1AP is diagonal should be the same that renders P −1BP
also diagonal. What does this mechanically mean? Well, if case A has loads that
are somehow “independent” from the ones in case B, then the principal stresses of
the combination might be equal to the sum of the individual principal stresses. A
notable case is for example a beam that is loaded vertically in case A and horizon-
tally in case B. I dare you to grab your FEM program one more time, run a test and
picture the eigenvalues and eigenvectors of the three cases in your head.

The moral of this fable is that if we have a case that is the combination of two
other simpler cases (say one with only surface loads and one with only volumetric
loads), in general we cannot just add the principal stresses (or Von Mises) of two
cases and expect to obtain a correct answer. We have to solve the full case again
(both the surface and the volumetric loads at the same time). In case we are stub-
born enough and still want to stick to solving the cases separately, there is a trick
we can resort to. Instead of summing principal stresses, what we can do is to sum
either displacements or the individual stress components, which are fully linear.
So we might pre-deform (or pre-stress) case B with the results from case A and
then expect the FEM program to obtain the correct stresses for the combined case.
However, this scheme is actually far more complex than just solving the combined
case in a single run and it also needs an educated guess and/or trial and error to
know at what time the pre-deformation or pre-stressing should be applied to take
into account the seismic load.

5.5.4 ASME stress linearisation (not linearity!)

After discussing linearity, let us now dig into linearisation. The name is similar
but these two animals are very different beasts. We said in sec. 5.2 that the ASME
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Boiler and Pressure Vessel Codewas born long beforemodern finite-elementsmeth-
ods were developed and of course being massively available for general engineer-
ing analysis (democratised?). Yet the code provides a comprehensive, sound and,
more importantly, a widely and commonly-accepted body of knowledge as for the
regulatory authorities to require its enforcement to nuclear plant owners. One of
the main issues of the ASME code refers to what is known as “membrane” and
“bending” stresses. These are defined in section VIII annex 5-A, although they are
widely used in other sections, particularly section III. Briefly, they give the zeroth-
order (membrane) and first-order (bending) moments (in the statistical sense) of
the stress distribution along a so-called Stress Classification Line or SCL, which
should be chosen depending on the type of problem under analysis.

The computation of these membrane and bending stresses are called “stress
linearisation” because it is like computing the Taylor expansion (or for the case,
expansion in Legendre polynomials) of an arbitrary stress distribution along a line,
and retaining the first two terms. That is to say, to obtain a linear approximation.
There are physical interpretations for both membrane and bending stresses, which
are beyond the scope of this chapter. As for the ASME requirements, they are a way
of having the mean and linear contributions of a certain stress distribution along
the pipe’s wall thickness.

So what about the SCLs? Well, the ASME standard says that they are lines that
go through a wall of the pipe (or vessel or pump, which is what the ASME code is
for) from the inside to the outside and ought to be normal to the iso-stress curves.
Stop. Picture yourself a stress field, draw the iso-stress curves (those would be the
lines that have the same colour in your picture) and then imagine a set of lines that
travel in a perpendicular direction to them. Finally, choose the one that seems the
prettiest (which most of the time is the one that seems the easiest). There you go!
You have an SCL. But there is a catch. So far, we have referred to a generic concept
of “stress.” Which of the several stresses out there should you picture? One of the
three normals, the three shear, Von Mises, Tresca? Well, actually you will have to
imagine tensors instead of scalars. And there might not be such a thing as “iso-
stress” curves, let alone normal directions. So pick any radial straight line through
the pipe wall at a location that seems relevant and now you are done. In our case
study, there will be a few different locations around the material interfaces where
high stresses due to differential thermal expansion are expected to occur. Just keep
this though with you: it is very important to define where the SCLs are located, as
they will define the “quality” of the obtained results.
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5.6 The infinite pipe revisited after college

Let us now make a (tiny) step from the general and almost philosophical subject
from the last section down to the particular case study, and reconsider the infinite
pressurised pipe once again. It is time to solve the problem with a computer using
finite elements and to obtain some funny coloured pictures instead of just equations
(like we did in sec. 5.3.2).

The first thing that has to be said is that, as with any interesting problem, there
are literally hundreds or different ways of solving it, each of them throwing partic-
ular conclusions. For example, one can:

1. solve a real 3D problem or a 2D axi-symmetric case (or even a 1D case using
the collocation method to solve the radial dependence),

2. have a full cylindrical geometry or just a half (180º), or a quarter (90º), or a
thin slice (a small amount of degrees),

3. use a structured or an unstructured grid,
4. uniformly or locally-refine the mesh (with several choices of refinement),
5. use first or second-order (or higher) elements,
6. use tetrahedra or hexahedra,
7. in the case of second-order hexahedra, use complete (i.e. 27-node hexahe-

dron) or incomplete (i.e. 20-node hexahedron) elements,
8. have different mesh sizes from very coarse to very fine,
9. solve the same problem in a few different solvers,

10. etc.

You can get both the exponential nature of each added bullet and how easily
we can add new further choices to solve a FEM problem. And each of these choices
will reveal you something about the nature of either the mechanical problem or
the numerical solution. It is not possible to teach any possible lesson from every
outcome in college, so you will have to learn them by yourself getting your hands
at them. I have already tried to address the particular case of the infinite pipe in a
recent report3 that is worth reading before carrying on with this article. The main
conclusions of the report are:

• For the same number of elements, second-order grids need more nodes than
linear ones, although they can better represent curved geometries.

• The three stress distributions computed with the finite-element give far more
reasonable results for the second-order case than for the first-order grid. This

3The aforementioned “On convergence of linearized stresses in an infinite pipe computed using the
finite element method.”
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(a) Structured second-order hexahedra (b) Unstructured second-order tetrahedra

Figure 5.13: Two of the hundreds of different ways the infinite pressurised pipe can be solved using
FEM. The axial displacement at the ends is set to zero, leading to a plane-strain condi on

is qualitatively explained by the fact that first-order tetrahedra have uniform
derivatives and such the elements located in both the external and external
faces represent the stresses not at the actual faces but at the barycentre of
the elements.

• Membrane stresses converge well for both the first and second-order cases
because they represent a zeroth-order moment of the stress distribution and
the excess and defect errors committed by the internal and external elements
approximately cancel out.

• Membrane plus bending stresses converge very poorly with linear elements
because the excess and defect errors do not cancel out because it is a first-
order moment of the stress distribution.

• The computational effort to solve a given problem, namely the CPU time and
the needed RAM (fig. 5.14) depend non-linearly on various factors, but the
most important one is the problem size which is three times the number of
nodes in the grid * The error with respect to the analytical solutions as a
function of the CPU time needed to compute the membrane stress is similar
for both first and second-order grids. But for the computation of the mem-
brane plus bending stress (fig. 5.14b), first-order grids give very poor results

41 08/Nov/19 — 8643e8a

https://en.wikipedia.org/wiki/Plane_stress#Plane_strain_(strain_matrix)


CHAPTER 5. CS4: FATIGUE ASSESSMENT IN NUCLEAR PIPING

compared to second-order grids for the same CPU time.

(a) Membrane M (b) Membrane plus bending MB

Figure 5.14: Error in the computa on of the linearised stresses vs. CPU me needed to solve the infinite
pipe problem using the finite element method

An additional note should be added. The FEM solution, which not only gives
the nodal displacements but also a method to interpolate these values inside the
elements, does not fully satisfy the original equilibrium equations at every point
(i.e. the strong formulation). It is an approximation to the solution of the weak
formulation that is close (measured in the vector space spanned by the shape func-
tions) to the real solution. Mechanically, this means that the FEM solution leads
only to nodal equilibrium but not point-wise equilibrium.

5.7 Adding complexity: the truth is out there

Let us review some issues that appear when solving our case study and that might
not have been thoroughly addressed back during our college days.

5.7.1 Two (or more) materials

The main issue with fatigue in nuclear piping during operational transients is that
at the welds between two materials with different thermal expansion coefficients
there can appear potentially-high stresses during temperature changes. If these
transients are repeated cyclically, fatigue may occur. We already have risen a
warning flag about stresses at material interfaces in sec. 5.7.1. Besides all the open
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questions about computing stresses at nodes, this case also adds the fact that the
material properties (say the Young’s Modulus E) is different in the elements that
are at each side of the interface.

(a) Surface grid showing the fixed face (ma-
genta), the load face (green) and the shared
face in the middle

(b) Warped displacements and Von Mises
stresses

Figure 5.15: Two cubes of different materials (the one in the le so , the one in the right hard) share a
face and a pressure is applied at the right-most face

To simplify the discussion that follows, let us replace for one moment the full
3×3 tensor and the nine partial derivatives of the displacement by just one strain ϵ
and let the linear elastic strain-stress relationship to be the simple scalar expression

σ = E · ϵ

Faced with the problem of computing the stress σ at one node shared by many
elements, we might:

1. compute the (weighted?) averages ⟨E⟩ and ⟨ϵ⟩ and then compute the stress
as ⟨σ⟩ = ⟨E⟩ · ⟨ϵ⟩. This would be like having a meta-material at the interface
with average properties, or

2. compute the stress as the (weighted?) average of the product E · ϵ in each
node ⟨σ⟩ = ⟨E · ϵ⟩. This would be like forcing a non-differentiable function
to behave smoothly, or

3. internally duplicate the nodes at the interface and compute one stress for
each material. This would result in a stress distribution which is not a real
function because the same location x will be associated to more than one
stress value, or
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4. duplicate the surface elements at the interfaces and solve the problem using
a contact formulation. This would render the problem non-linear and add
the complexity of having to find appropriate penalty coefficients.

There might be other choices as well. Do you know what your favourite FEM
program does? Now follow up with these questions:

a. Does the manual say?
b. Does it tell you the details like how it weighs the averages?
c. Does it discard values that are beyond a number of standard deviations away?
d. How many standard deviations?
e. …

You can still add a lot of questions that you should be having right now. If you
cannot get a clear answer for at least one of them, then start to worry. After you
do, add the following question:

Do you believe your favourite FEM program’s manual?

What we as responsible engineers who have to sign a report stating that a nu-
clear power plant will not collapse due to fatigue in its pipes, is to fully understand
what is going on with our stresses. Richard Stallman says that the best way to solve
a problem is to avoid it in the first place. In this case, we should avoid having to
trust a written manual and rely on software whose source code is available. What
we need is the capacity (RMS calls it freedom) to be able to see the detailed steps
performed by the program so we can answer any question we (or other people)
might have.

Without resorting into philosophical digressions about the difference between
free and open-source software (not because it is not worth it, but because it would
take a whole book), the programs that make their source code available for their
users are called open-source software. If the users can also modify and re-distribute
the modified versions, they are called free software. Note that the important con-
cept here is freedom, not price. In Spanish (my native language) it would have been
easier because there are two separate words for free as in freedom (“libre”) and for
free as in price (“gratis”).

In effect, a couple of years ago Angus Ramsay noted a weird behaviour in the
results given by a certain commercial non-free FEA software regarding the han-
dling of expansion coefficients from ASME data. To understand what was going
on, Angus and I had to guess what the program was doing to reproduce the al-
legedly weird results. Finally, it was a matter how the data was rounded up to be
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presented in a paper table rather than a programming flaw. Nevertheless, we were
lucky our guesses lead us to a reasonable answer. If we had access to the program’s
source code, we could have thoroughly analysed the issue in a more efficient way.
Sure, we might not have the same programming skills the original authors of the
software have, but if it had been free software we would have had the freedom to
hire a programmer to help us out. That is what free means. In Eric Raymond’s
words, “given enough eyeballs, all bugs are shallow.” This is rather important in
engineering software where verification and validation is a must, especially in reg-
ulated fields like the nuclear industry. First, think how can a piece of software be
verified if the source code is not available for independent analysis. And then, ask
yourself another question:

Do you trust your favourite FEM program?

Back to the two-material problem, all the discussion above in sec. 5.7.1 about
non-continuous derivatives applies to a sharp abrupt interface. In the study case the
junctions are welded so there is a heat-affected zone with changes in the material
micro structure. Therefore, there exists a smooth transition from the mechanical
properties of one material to the other one in a way that is very hard to predict
and to model. In principle, the assumption of a sharp interface is conservative in
the sense that it is expected the computed stresses to be larger than the actual ones.
There cannot be an SCL exactly on a material interface so there should be at least
two SCLs, one at each side of the junctions as fig. 5.6 illustrates. The actual distance
would have to be determined first as an educated guess, then via trial and error and
finally in accordance with the regulator.

5.7.2 A parametric tee

Time for another experiment. We know (more or less) what to expect from an
infinite pressurised pipe from sec. 5.3.2 and sec. 5.6. What if we added a branch to
such pipe? Even more, what if we successively varied the diameter of the branch
to see what happens? This is called parametric analysis, and sooner or later (if not
now) you will find yourself performing this kind of computations more often than
any other one.

Let us solve the following mock-up case: a long main 12-inch schedule 80 pipe
has an orthogonal branch of a certain nominal diameter of db inches (it seems that
the SI did not do well amongst the piping engineering community). Both the main
line and the branch are pressurised with p = 10 MPa. Themain pipe is aligned with
the x axis and the branch coincides with the z axis. Thus, the x-z plane acts as a
symmetry plane and we only need to model two octants of the full geometry, as

45 08/Nov/19 — 8643e8a

https://www.ramsay-maunder.co.uk/knowledge-base/technical-notes/accuracy-of-thermal-expansion-properties-in-asme-bpv-code/
https://www.ramsay-maunder.co.uk/knowledge-base/technical-notes/accuracy-of-thermal-expansion-properties-in-asme-bpv-code/
https://en.wikipedia.org/wiki/Free_software
https://en.wikipedia.org/wiki/Eric_S._Raymond
http://www.catb.org/~esr/writings/cathedral-bazaar/
https://en.wikipedia.org/wiki/Software_verification_and_validation
https://en.wikipedia.org/wiki/Heat-affected_zone
https://en.wikipedia.org/wiki/International_System_of_Units


CHAPTER 5. CS4: FATIGUE ASSESSMENT IN NUCLEAR PIPING

shown in fig. 5.16. Note that the tee is modelled as the boolean intersection of two
cylinders. There are no filleted edges nor rounded corners or any other smoothing.
A real CAD file containing the appropriate geometry needs to be built for the real
case study.

(a) (b)

Figure 5.16: Geometry of the parametric 12-inch tee for the par cular case of a 4-inch branch

The boundary conditions are

• Magenta: axial symmetry u = 0
• Salmon: plane symmetry v = 0
• Yellow: axial u = 0 and radial symmetry 0 = vz − wy
• Dark green: axial w = 0 and radial symmetry 0 = vx − uy
• Light green: internal pressure p = 10 MPa

Three radial SCLs—namely cyan, yellow and green—are located at a distance
of one thickness of the main line from the external wall of the branch into the
main direction x (fig. 5.17). In fig. 5.18 we can see the results of the parametric
computation, namely the linearised membrane and bending stresses computed in
each of the three SCLs as a function of db. Note that db is a continuous variable
and even unreal values (such as 9-inches) were used to perform the parametric run.
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The thickness of such cases was interpolated using actual schedule-80 geometrical
data from ASME B36.310M.

(a) y-z projection (b) x-z projection

Figure 5.17: Loca on of the three radial SCLs: cyan, yellow and green

Fig. 5.19 illustrates how the pipes deform when subject to the internal pressure.
When the branch is small, the problem resembles the infinite-pipe problem where
the main pipe expands radially outward and there is only traction. For large values
of db, the pressure in the branch bends down the main pipe, generating a com-
plex mixture of traction and compression. The tipping point seems to be around a
branch diameter db ≈ 5 in.

Do you now see the added value of training throw-ins with watermelons? We
might go on…

• studying how the maximum Von Mises stress as a function the radius rf of
an hypothetical fillet operation on the tee’s sharp edges,

• making the branch another material and adding thermal expansion,
• adding piping supports to restrain the degrees of freedom of the pipes,
• using distributed forces from earthquakes,
• etc.

Most of the time at college wewould barely do what is needed to be approved in
one course and move on to the next one. If you have the time and consider a career
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(a) Membrane stress (b) Bending stress

Figure 5.18: Parametric stresses as a func on of the nominal diameter db of the branch

(a) db = 2 in (b) db = 5 in (c) db = 10 in

Figure 5.19: Von Mises stress and 400x warped displacements for three values of db
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related to finite-element analysis, please do not. Clone the repository (sec. 5.9.1)
with the input files for Fino and start playing. If you are stuck, do not hesitate
asking for help in wasora’s mailing list.

One further detail: it is always a sane check to try to explain the numerical re-
sults based on physical reasoning (i.e. “with your fingers”) as we did two paragraphs
above. Most of the time you will be solving problems whilst already knowing what
the result would (or ought to) be.

5.7.3 Bake, shake and break

A fellow mechanical engineer who went to the same high school I did, who went
to the same engineering school I did and who worked at the same company I did,
but who earned a PhD in Norway once told me two interesting things about finite-
elements graduate courses. First, that in Trondheim the classes were taught by
faculty from the the mathematics department rather than from the mechanical en-
gineering department. It made complete sense to me, as I always have thought
finite elements mainly as a maths subject. And even though engineers might know
some maths, it is nothing compared to actual mathematicians. Secondly, that they
called the thermal, natural oscillations and elastic problems as the rhyming trio
“bake, shake and break” (they also had “wake” for fluids, but that is a different
story). These are just the three problems listed in section sec. 5.5 that we need to
solve in our nuclear power plant.

So here we are again with the case study where we have to compute the lin-
earised stresses at certain SCLs located near the interface between two different
kinds of steels during operational and incidental transients of the plant. The first
part is then to “bake” the pipes, modelling a thermal transient with time-dependent
temperature or convection boundary conditions (it depends on the system). This
steps gives a time and space-dependent temperature T (x, y, z, t).

We then proceed to “shake” the pipes. That is to say, we obtain a distributed
load vector f(x, y, z) which is statically equivalent to the design earthquake.

Finally we attempt to “break” the pipes successively solving many steady-state
elastic problems for different times t of the operational transient. Some remarks
about this step:

1. The material properties are temperature-dependent (we use data from
ASME II part D).

2. Thermal expansion is taken into account. The reference temperature (i.e. the
temperature at which there is no expansion) is 20ºC that coincides with
ASME’s decision of the reference temperature for the mean thermal expan-
sion coefficients.
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3. The temperature distribution T (x, y, t, z) for bullets 1 & 2 is the generalisa-
tion of the reduced-model procedure explained in sec. 5.5.1.

4. The internal faces of the pipes are subject to an uniform pressure p(t) given
by the definition of the transient.

5. There are mechanical supports throughout the piping system. Depending
on the type of the support (i.e. vertical, lateral, axial, full, etc.) one or more
degrees of freedom (i.e. u, v and/or w) are fixed to zero. The ends of the CAD
models are chosen always to have axially-null displacements.

6. The earthquake-equivalent volumetric force f(x, y, z) is only be applied at
the time t where themaximum stresses occur. Note that due to the discussion
from sec. 5.5.3 we cannot compute the stresses raised just by f(x, y, z) and
then add them to the main stresses. The force has to be included into the
“break” step. An educated guess of the time where the maximum stress occur
is usually enough. Anyway, it might be necessary a trial and error scheme
to find the sweet spot.

7. According to ASME III, the seismic load has to be applied during two seconds
with the two possible signs. That is to say, apply f(x, y, z) during two sec-
onds and then −f(x, y, z) during two further seconds when themain stresses
are maximums.

8. A number of stress classification lines have to be defined. The locations
should be previously accorded with the plant owner and/or the regulator.

9. The stress linearisation has to be performed individually for each principal
stress σ1, σ2 and σ3 to fulfil the requirements ASME III NB-3126 (see sec. 5.8.1
below).

10. This “break” step is linear.
Is the last bullet right? Surely you’re joking, Mr. Theler! Linear problems are

simple and almost useless. How can this extremely complex problem be linear?
Well, let us see. First, there are two main kinds of non-linearities in FEM:

1. Geometrical non-linearities
2. Material non-linearities
The first one is easy. Due to the fact that the pipes are made of steel, it is

expected that the actual deformations are relatively small compared to the original
dimensions. This leads to the fact that the mechanical rigidity (i.e. the stiffness
matrix) does not change significantly when the loads are applied. Therefore, we
can safely assume that the problem is geometrically linear.

Let us now address material non-linearities. On the one hand we have the
temperature-dependent issue. According to ASME II part D, what depends on tem-
perature T is the Young’s Modulus E. But the stress-strain relationship is yet
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σ = E(T ) · ϵ

What changes with temperature is the slope of σ with respect to ϵ (think and
imagine!), but the relationship between them is still linear.

On the other hand, we have a given non-trivial temperature distribution T (x, t)
within the pipes that is a snapshot of a transient heat conduction problem at a cer-
tain time t (think and picture yourself taking photos of the temperature distribution
changing in time). Let us now forget about the time, as after all we are solving a
steady-state elastic problem. Now you can trust me or ask a FEM teacher, but the
continuous displacement formulation can be loosely written as

K
[
E (T (x)) , x

]
· u(x) = b(x)

If you notice, the complex dependence of the stiffness matrix K can be reduced
to just the spatial vector x:

K(x) · u(x) = b(x)

And this last expression is linear in u! In effect, the discretisation step means
to integrate over x. As K , u and b depend only on x, then after integration one
gets just numbers inside K and b. Again, you can either, in increasing order of
recommendation:

1. trust me,
2. ask a teacher, or
3. go through with the maths.

To recapitulate, the figures in this section show some partial non-dimensional
results of an actual system of a certain nuclear power plant. The main issues to
study were the interfaces between a carbon-steel pipe and a stainless-steel orifice
plate used to measure the (heavy) water flow through the line. The steps discussed
so far include

1. building a CAD model of the piping section under study, which will be the
main domain (fig. 5.20a or figs. 5.3, 5.5a, 5.7)

2. creating a mesh for the main domain refining locally around the material
interfaces (fig. 5.20b or figs. 5.5b, 5.9)

3. defining the number and locations of the SCLs (fig. 5.21 or figs. 5.6, 5.7)
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(a) General view. Carbon steel is grey and stainless steel is green.

(b) Detail of the mesh refinement around the interface.

Figure 5.20: A sec on of a piping system in a nuclear power plant
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Figure 5.21: Loca on of the 15 SCLs

(a) Simplified axi-symmetric domain

(b) Generalisation

Figure 5.22: Temperature distribu on for a certain instant of the transient, computed in the simplified
two-dimensional axi-symmetric domain and its generalisa on to the three-dimensional mechanical do-
main as discussed in sec. 5.5.1
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(a) f1 ≈ 60 Hz (b) f1 ≈ 130 Hz (c) f1 ≈ 200 Hz

(d) f1 ≈ 270 Hz (e) f1 ≈ 330 Hz (f) f1 ≈ 560 Hz

(g) f1 ≈ 660 Hz (h) f1 ≈ 730 Hz (i) f1 ≈ 930 Hz

Figure 5.23: First nine natural modes of oscilla on of the piping system subject to the boundary condi-
ons the supports provide. Anima ons are available online (sec. 5.9.1).
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4. computing a heat conduction (bake) transient problem with temperatures as
a function of time from the operational transient in a simple domain using
temperature-dependent thermal conduction coefficients from ASME II part
D (fig. 5.22 or fig. 5.8)

5. generalising the temperature distribution as a function of time to the general
domain (fig. 5.22b or fig. 5.9)

6. performing a modal analysis (shake) on the main domain to obtain the main
oscillation frequencies and modes (fig. 5.23 7. obtaining a distributed force
statically-equivalent to the earthquake load (shake, fig. 5.24 or fig. 5.11)

7. successively solving the linear elastic problem for different times using the
generalised temperature distribution taking into account

a. the dependence of the Young’s Modulus E and the thermal expansion
coefficient α with temperature,

b. the thermal expansion effect itself
c. the instantaneous pressure exerted in the internal faces of the pipes at

the time t according to the definition of the operational transient
d. the restriction of the degrees of freedom of those faces, lines or points

that correspond to mechanical supports located both within and at the
ends of the CAD model

e. the earthquake load, which according to ASME should be present only
during four seconds of the transient: two seconds with one sign and
the other two seconds with the opposite sign. This period should be
selected to coincide with the instant of highest mechanical stress (con-
servative computation)

8. computing the linearised stresses (membrane andmembrane plus bending) at
the SCLs combining them as Principal 1, Principal 2, Principal 3 and Tresca4

9. juxtaposing these linearised stresses for each time of the transient and for
each transient so as to obtain a single time-history of stresses including all the
operational and/or incidental transients under study, which is what stress-
based fatigue assessment needs (recall sec. 5.2.3 and go on to sec. 5.8).

A pretty nice list of steps, which definitely I would not have been able to tackle
when I was in college. Would you?

4A deep technical note should be added for discussing the validity of linearising a stress invariant
as the principall stresses individually. It should be enough for the present study to keep in mind that in
sec. 5.8.1 it is the difference of these linearised principal stresses (i.e. Tresca-like) are used to compute
the stress amplitude of the periodic load for fatigue assessment.
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(a) ax (b) ay (c) az

Figure 5.24: The sta c equivalent accelera ons computed using the SRSS method

5.8 Cumulative usage factors

Strictly speaking, finite elements are not needed anymore at this point of the anal-
ysis. But even though we are (or want to be) FEM experts, we have to understand
that if the objective of a work is to evaluate fatigue (or fracture mechanics or what-
ever), finite elements are just a mean and not and end. If we just mastered FEM and
nothing else, our field of work would be highly reduced. We need to use all of our
computational knowledge to perform actually engineering tasks and to be able to
tell our bosses and clients whether the pipe would fail or not. This tip is induced in
college but it is definitely reinforced afterwards when working with actual clients
and bosses.

Another comment I would like to add is that I had to learn fatigue practically
from scratch when faced with this problem for the first time in my engineering
career. I remembered some basics from college (like the general introduction from
sec. 5.2.3), but I lacked the skills to perform a real computation by myself. Luckily
there still exist books, there are a lot of interesting online resources (not to mention
Wikipedia) and, even more luckily, there are plenty of other fellow engineers that
are more than eager to help you. My second tip is: when faced to a new challenging
problem, read, learn and ask for guidance to real people to see if you read and
learned it right.

Back and distantly, in sec. 5.2 we said that people noticed there were some
environmental factors that affected the fatigue resistance of materials. The basic
ASME approach does not take care of these factors, and it is regarded as fatigue “in
air.” We are interested in taking them into account, so we follow the US Nuclear
Regulatory Commission guidelines to evaluate fatigue “in water.”
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5.8.1 In air (ASME’s basic approach)

We already said in sec. 5.2.3 that the stress-life fatigue assessment method gives the
limit numberN of cycles that a certainmechanical part canwithstandwhen subject
to a certain periodic load of stress amplitude Salt. If the actual number of cycles n
the load is applied is smaller than the limit N , then the part is fatigue-resistant. In
our case study there is a mixture of several periodic loads, each one expected to
occur a certain number of times. ASME’s way to evaluate the resistance is to break
up the stress history into partial stress amplitudes Salt,j between a “peak” and a
“valley” and to compute individual usage factors Uj for the j-th amplitude (which
does not need to coincide with one of the k transient loads) as

Uj = nj

Nj

The overall cumulative usage factor is then the algebraic sum of the partial
contributions, a.k.a. Miner’s rule as learned in college:

CUF = U1 + U2 + · · · + Uj + . . .

When CUF < 1, then the part under analysis can withstand the proposed cyclic
operation. Now, if the extrema of the partial stress amplitude correspond to differ-
ent transients, then the following note in ASME III’s NB-3224(5) should be followed:

In determining n1, n2, n3, . . ., nj consideration shall be given to the
superposition of cycles of various origins which produce a total stress
difference range greater than the stress difference ranges of the indi-
vidual cycles. For example, if one type of stress cycle produces 1,000
cycles of a stress difference variation from zero to +60,000 psi and an-
other type of stress cycle produces 10,000 cycles of a stress difference
variation from zero to −50,000 psi, the two types of cycle to be consid-
ered are defined by the following parameters:

(a) for type 1 cycle, n1 = 1,000 and Salt,1 = (60, 000 + 50, 000)/2;
(b) for type 2 cycle, n2 = 9,000 and Salt,2 = (50, 000 + 0)/2.

This cryptic paragraph can be better explained by using a clearer example.
To avoid using actual sensitive data from a real power plant, let us use the same
test case used by both the US Nuclear Regulatory Commission (in its report
NUREG/CR-6909) and the Electric Power Institute (report 1025823) called “EAF
(Environmentally-Assisted Fatigue) Sample Problem 2-Rev. 2 (10/21/2011)”.
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Figure 5.25: A low-alloy steel vessel nozzle (blue) welded to a stainless steel pipe (grey)

It consists of a typical vessel nozzle with attached piping as illustrated
in fig. 5.25. These components are subject to four transients k = 1, 2, 3, 4 that give
rise to linearised stress histories (slightly modified according to NB-3216.2) which
are given as individual stress values juxtaposed so as to span a time range of about
36,000 seconds (fig. 5.26a). As the time steps is not constant, each stress value has
an integer index i that uniquely identifies it:

k Time range [s] Index range Cycles nk

1 0–3210 1–523 20
2 3210–6450 524–959 50
3 6450–9970 960–1595 20
4 9970–35971 1596–2215 100

A design-basis earthquake was assumed to occur briefly during one second (sic)
at around t = 3470 seconds, and it is assigned a number of cycles ne = 5. The de-
tailed stress history for one of the SCLs including both the principal and lineariased
stresses, which are already offset following NB-3216.2 so as to have a maximum
stress equal to zero, can be found as an appendix in NRC’s NUREG/CR-6909 report,
or in the repository with the scripts I prepared for you to play with this problem.

To compute the global usage factor, we first need to find all the combinations
of local extrema pairs and then sort them in decreasing order of stress difference.
For example, the largest stress amplitude is found between i = 447 and i = 694.
The second one is 447–699. Then 699–1020, 699–899, etc. For each of these pairs,
defined by the indexes i1,j and i2,j , a partial usage factor Uj should computed. The
stress amplitude Salt,j which should be used to enter into the S-N curve is
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Salt,j = 1
2

· ke,j ·
∣∣∣MB′

i1,j
− MB′

i2,j

∣∣∣ · ESN
E(Tmaxj

)

where ke is a plastic correction factor for large loads (NB-3228.5), ESN is the
Young’s Modulus used to create the S-N curve (provided in the ASME fatigue
curves) and E(Tmaxj ) is the material’s Young’s Modulus at the maximum
temperature within the j-th interval.

We now need to comply with ASME’s obscure note about the number of cycles
to assign a proper value of nj . Back to the largest pair 447-694, we see that 447
belongs to transient #1 which has assigned 20 cycles and 694 belongs to the earth-
quake with 5 cycles. Therefore n1 = 5, and the cycles associated to each index
are decreased in five. So i = 694 disappears and the number of cycles associated
to i = 447 are decreased from 20 to 15. The second largest pair is now 447-699,
with 15 (because we just spent 5 in the first pair) and 50 cycles respectively. Now
n2 = 15, point 447 disappears and 699 remains with 35 cycles. The next pair is
699-1020, with number of cycles 35 and 20 so n3 = 20, point 1020 disappears and
699 remains with 15 cycles. And so on, down to the last pair.

Why all these details? Not because I want to teach you how to perform fatigue
evaluations just reading this section without resorting to ASME, fatigue books and
even other colleagues. It is to show that even though these computation can be
made “by hand” (i.e. using a calculator or, God forbids, a spreadsheet) when having
to evaluate a few SCLs within several piping systems it is far (and I mean really
far) better to automate all these steps by writing a set of scripts. Not only will
the time needed to process the information be reduced, but also the introduction
of human errors will be minimised and repeatability of results will be assured—
especially if working under a distributed version control system such as Git. This
is true in general, so here is another tip: learn to write scripts to post-process your
FEM results (you will need to use a script-friendly FEM program) and you will gain
considerable margins regarding time and quality.

5.8.2 In water (NRC’s extension)

The fatigue curves and ASME’s (both III and VIII) methodology to analyse cyclic
operations assume the parts under study are in contact with air, which is not the
case of nuclear reactor pipes. Instead of building a brand new body of knowledge
to replace ASME, the NRC decided to modify the former adding environmentally-
assisted fatigue multipliers to the traditional usage factors, formally defined as
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(a) Full time range of the juxtaposed transients spanning ≈ 36,000
seconds

(b) Detail of transients showing the ids of some extrema

(c) Detail of the earthquake (it does not follow the ASME two-second
rule)

Figure 5.26: Time history of the linearised stress MB31 corresponding to the example problem from
NRC and EPRI. The indexes i of the extrema are shown in green (minimums) and red (maximums)
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(a) Reference from NUREG/CR6909

(b) Results reproduced by the author

Figure 5.27: Tables of individual usage factors for the NRC/EPRI “EAF Sample Problem 2-Rev. 2
(10/21/2011).” One table is taken from a document issued by almost-a-billion-dollar-year-budget gov-
ernment agency from the most powerful country in the world and the other one is from a third-world
engineering startup. Guess which is which.
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Fen = Nair
Nwater

≥ 1

This way, the environmentally-assisted usage factor for the j-th load pair is
CUFen,j = Uj · Fen,j and the global cumulative usage factor in water is the sum of
these partial contributions

CUFen = U1 · Fen,1 + U2 · Fen,2 + · · · + Uj · Fen,j + . . . (5.1)

In EPRI’s words, the general steps for performing an EAF analysis are as fol-
lows:

1. perform an ASME fatigue analysis using fatigue curves for an air environ-
ment

2. calculate Fen factors for each transient pair in the fatigue analysis
3. apply the Fen factors to the incremental usage calculated for each transient

pair (Uj ), to determine the CUFen, using eq. 5.1

Again, if CUFen < 1, then the system under study can withstand the assumed
cyclic loads. Note that as Fen,j , we can have CUF < 1 and CUFen > 1 at the same
time. The NRC has performed a comprehensive set of theoretical and experimen-
tal tests to study and analyse the nature and dependence of the non-dimensional
correction factors Fen. They found that, for a given material, they depend on:

a. the concentration O(t) of dissolved oxygen in the water,
b. the temperature T (t) of the pipe,
c. the strain rate ϵ̇(t), and
d. the content of sulphur S(t) in the pipes (only for carbon or low-allow steels).

Apparently it makes no difference whether the environment is composed of
either light or heavy water. There are somewhat different sets of non-dimensional
analytical expressions that estimate the value of Fen(t) as a function of O(t),
T (t), ϵ̇(t) and S(t), both in the few revisions of NUREG/CR-6909 and in EPRI’s
report #1025823. Although they are not important now, the actual expressions
should be defined and agreed with the plant owner and the regulator. The
main result to take into account is that Fen(t) = 1 if ϵ̇(t) ≤ 0, i.e. there are
no environmental effects during the time intervals where the material is being
compressed.

Once we have the instantaneous factor Fen(t), we need to obtain an average
value Fen,j which should be applied to the j-th load pair. Again, there are a few
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different ways of lumping the time-dependent Fen(t) into a single Fen,j for each
interval. BothNRC and EPRI give simple equations that depend on a particular time
discretisation of the stress histories that, in my view, are all ill-defined. My guess is
that they underestimated their audience and feared readers would not understand
the slightly-more complex mathematics needed to correctly define the problem.
The result is that they introduced a lot of ambiguities (and even technical errors)
just not to offend the maths illiterate. A decision I do not share, and a another
reason to keep on learning and practising math.

When faced for the first time with the case study, I have come up with a weight-
ing method that I claim is less ill-defined (it still is for border-line cases) and which
the plant owner accepted as valid. Fig. 5.28 shows the reference results of the prob-
lem (based on computing two correction factors and then taking the maximum)
and the ones obtained with the proposed method (by computing a weighted inte-
gral between the valley and the peak). Note how in fig. 5.28a, pairs 694-447 and
699-447 have the same Fen even though they are (marginally) different. The results
from fig. 5.28b give two (marginally) different correction factors.

5.9 Conclusions

Back in college, we all learned how to solve engineering problems. And once we
graduated, we felt we could solve and fix the world (if you did not graduate yet,
you will feel it shortly). But there is a real gap between the equations written in
chalk on a blackboard (now probably in the form of beamer slide presentations)
and actual real-life engineering problems. This chapter introduces a real case from
the nuclear industry and starts by idealising the structure such that it has a known
analytical solution that can be found in textbooks. Additional realism is added in
stages allowing the engineer to develop an understanding of the more complex
physics and a faith in the veracity of the finite-element results where theoretical
solutions are not available. Even more, a brief insight into the world of evaluation
of stress-life fatigue using such results further illustrates the complexities of real-
life engineering analysis, even though the presented case was simplified for the
sake of clearness. Here is a list of the tips that arose throughout the text:

• use and exercise your imagination
• practise math
• start with simple cases first
• grasp the dependence of results with independent variables
• remember there are other methods beside finite elements
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(a) Results according to the author of NUREG/CR-6909 corresponding to
the latest draft of the document

(b) Results reproduced by the author using his own weighting scheme

Figure 5.28: Tables of individual environmental correc on and usage factors for the NRC/EPRI “EAF
Sample Problem 2-Rev. 2 (10/21/2011).” The reference method assigns the same Fen to the first two
rows whilst the proposed lumping scheme does show a difference
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• take into account that even within the finite element method, there is a wide
variety of complexity in the problems that can be solved

• play with your favourite FEM solver (mine is CAEplex) solving simple cases,
trying to predict the results and picturing the stress tensor and its eigenvec-
tors in your imagination

• prove (with pencil and paper) that even though the principal stresses are not
linear with respect to summation, they are linear with respect to multiplica-
tion

• grab any stress distribution from any of your FEM projects, compute the iso-
stress curves and the draw normal lines to them to get acquainted with SCLs

• search online for “stress linearisation” (or “linearization” if you want) and
then get a copy of ASME VIII Div 2 Annex 5-A

• take into account that FEM solutions lead only to nodal equilibrium but not
point-wise equilibrium

• remember that welded materials with different thermal expansion coeffi-
cients may lead to fatigue under cyclic temperature changes

• try to find an explanation of the results obtained, just like we did when we ex-
plained the parametric curves from fig. 5.18 with two opposing effects which
were equal in magnitude around db = 5 inches

• think thermal-mechanical plus earthquakes cases as “bake, break and shake”
problems

• understand why the elastic problem of the case study is still linear after all
• keep in mind that finite-elements are a means to get an engineering solution,
not an end by themselves

• learn to write scripts to post-process FEM results (from an script-friendly
open-source FEM program)

• work under a distributed version control system such as Git, even when just
editing input files or writing reports

• do not write ambiguous reports by replacing appropriate mathematical for-
mulae with words just not to offend the illiterate

• try to avoid proprietary programs and favour free and open source ones.

About your favourite FEM program, ask yourself these two questions:

1. Does your favourite FEM program’s manual say what the program does?
2. Do you believe your favourite FEM program’s manual?
3. Do you trust your favourite FEM program?

And finally, make sure that at the end of the journey from college theory to
an actual engineering problem your conscience is clear knowing that there exists
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a report with your signature on it. That is why we all went to college in the first
place.

5.9.1 Online stuff

Here is a list of sub-problems and stuff to play with.

• The pendulum-swing video from sec. 5.1

– https://youtu.be/Q-lKK4A2OzA

• “On convergence of linearized stresses in an infinite pipe computed using the
finite element method” from secs. 5.3.2, 5.5.3, 5.3.2, 5.6

– https://www.seamplex.com/fino/doc/pipe-linearized/

• The three cubes from sec. 5.5.3

– case A: pure normal loads (https://caeplex.com/p/d8fe)
– case B: pure shear loads (https://caeplex.com/p/b494)
– case C: the combination of A & B (https://caeplex.com/p/9899)

• The animations of natural oscillations in fig. 5.10

– https://www.seamplex.com/docs/nafems4/mode1.webm
– https://www.seamplex.com/docs/nafems4/mode2.webm
– …

• The animations of natural oscillations in fig. 5.23

– https://www.seamplex.com/docs/nafems4/case-mode1.webm
– https://www.seamplex.com/docs/nafems4/case-mode2.webm
– …

• The parametric tee repository from sec. 5.7.2

– https://github.com/seamplex/tee

• The environmental fatigue sample problem repository from secs. 5.8.1, 5.8.2

– https://github.com/seamplex/cufen

See https://www.seamplex.com/nafems for new material, updated links and
the full version of this case with many more details about the case and the associ-
ated mathematics.
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