
FeenoX description
A free no-fee no-X uniX-like finite-element(ish) tool,

Jeremy Theler

i

Table of Contents

1 Overview . 1

2 Introduction . 3

3 Running feenox . 9
3.1 Invocation . 9
3.2 Compilation . 10

3.2.1 Quickstart . 10
3.2.2 Detailed configuration and compilation . 11

3.2.2.1 Mandatory dependencies . 11
3.2.2.2 Optional dependencies . 12
3.2.2.3 FeenoX source code . 14
3.2.2.4 Configuration . 14
3.2.2.5 Source code compilation . 15
3.2.2.6 Test suite . 16
3.2.2.7 Installation . 21

3.2.3 Advanced settings . 22
3.2.3.1 Compiling with debug symbols . 22
3.2.3.2 Using a different compiler . 22
3.2.3.3 Compiling PETSc . 23

4 Examples . 24

5 Tutorial . 25

6 Description . 26
6.1 Algebraic expressions . 28
6.2 Initial conditions . 28
6.3 Expansions of command line arguments . 28

7 FeenoX & the UNIX Philospohy 29
7.1 Rule of Modularity . 29
7.2 Rule of Clarity . 29
7.3 Rule of Composition . 29
7.4 Rule of Separation . 29
7.5 Rule of Simplicity . 30
7.6 Rule of Parsimony . 30
7.7 Rule of Transparency . 30
7.8 Rule of Robustness . 30
7.9 Rule of Representation . 30

ii

7.10 Rule of Least Surprise . 31
7.11 Rule of Silence . 31
7.12 Rule of Repair . 31
7.13 Rule of Economy . 31
7.14 Rule of Generation . 31
7.15 Rule of Optimization . 32
7.16 Rule of Diversity . 32
7.17 Rule of Extensibility . 32

1

1 Overview

FeenoX is a computational tool that can solve engineering problems which are usually casted
as differential-algebraic equations (DAEs) or partial differential equations (PDEs). It is to
finite elements programs and libraries what Markdown is to Word and TeX, respectively.
In particular, it can solve

• dynamical systems defined by a set of user-provided DAEs (such as plant control dy-
namics for example)

• mechanical elasticity

• heat conduction

• structural modal analysis

• neutron diffusion

• neutron transport

FeenoX reads a plain-text input file which contains the problem definition and writes
100%-user defined results in ASCII (through PRINT or other user-defined output instructions
within the input file). For PDE problems, it needs a reference to at least one Gmsh (http://
gmsh.info/) mesh file for the discretization of the domain. It can write post-processing
views in either .msh or .vtk formats.

Keep in mind that FeenoX is just a back end reading a set of input files and writing
a set of output files following the design philosophy of UNIX (separation, composition,
representation, economy, extensibility, etc). Think of it as a transfer function (or a filter in
computer-science jargon) between input files and output files:

+------------+

mesh (*.msh) } | | { terminal

data (*.dat) } input ----> | FeenoX |----> output { data files

input (*.fee) } | | { post (vtk/msh)

+------------+

Following the UNIX programming philosophy, there are no graphical interfaces attached
to the FeenoX core, although a wide variety of pre and post-processors can be used with
FeenoX. To illustrate the transfer-function approach, consider the following input file that
solves Laplace’s equation ∇2φ = 0 on a square with some space-dependent boundary con-
ditions:

φ(x, y) = +y for x = −1 (left)

φ(x, y) = −y for x = +1 (right)

∇φ · n̂ = sin(π/2x) for y = −1 (bottom)

∇φ · n̂ = 0 for y = +1 (top)

PROBLEM laplace 2d

READ_MESH square-centered.msh # [-1:+1]x[-1:+1]

boundary conditions

BC left phi=+y

BC right phi=-y

BC bottom dphidn=sin(pi/2*x)

BC top dphidn=0

SOLVE_PROBLEM

http://gmsh.info/
http://gmsh.info/

Chapter 1: Overview 2

same output in .msh and in .vtk formats

WRITE_MESH laplace-square.msh phi VECTOR dphidx dphidy 0

WRITE_MESH laplace-square.vtk phi VECTOR dphidx dphidy 0

Laplace’s equation solved with FeenoX The .msh file can be post-processed with Gmsh
(http://gmsh.info/), and the .vtk file can be post-processed with Paraview (https://
www.paraview.org/). See https://www.caeplex.com for a mobile-friendly web-based in-
terface for solving finite elements in the cloud directly from the browser.

http://gmsh.info/
http://gmsh.info/
https://www.paraview.org/
https://www.paraview.org/
https://www.caeplex.com

3

2 Introduction

FeenoX can be seen either as

• a syntactically-sweetened way of asking the computer to solve engineering-related math-
ematical problems, and/or

• a finite-element(ish) tool with a particular design basis.

Note that some of the problems solved with FeenoX might not actually rely on the
finite element method, but on general mathematical models and even on the finite volumes
method. That is why we say it is a finite-element(ish) tool.

In other words, FeenoX is a computational tool to solve

• dynamical systems written as sets of ODEs/DAEs, or

• steady or quasi-static thermo-mechanical problems, or

• steady or transient heat conduction problems, or

• modal analysis problems, or

• neutron diffusion or transport problems, or

• community-contributed problems

in such a way that the input is a near-English text file that defines the problem to be
solved.

One of the main features of this allegedly particular design basis is that simple problems
ought to have simple inputs (rule of simplicity) or, quoting Alan Kay, “simple things should
be simple, complex things should be possible.”

For instance, to solve one-dimensional heat conduction over the domain x ∈ [0, 1] (which
is indeed one of the most simple engineering problems we can find) the following input file
is enough:

PROBLEM thermal 1D # tell FeenoX what we want to solve

READ_MESH slab.msh # read mesh in Gmsh’s v4.1 format

k = 1 # set uniform conductivity

BC left T=0 # set fixed temperatures as BCs

BC right T=1 # "left" and "right" are defined in the mesh

SOLVE_PROBLEM # tell FeenoX we are ready to solve the problem

PRINT T(0.5) # ask for the temperature at x=0.5

$ feenox thermal-1d-dirichlet-constant-k.fee

0.5

$

The mesh is assumed to have been already created with Gmsh (http://gmsh.info/) (or
any other pre-processing tool and converted to .msh format with Meshio (https://github.
com/nschloe/meshio) for example). This assumption follows the rule of composition and
prevents the actual input file to be polluted with mesh-dependent data (such as node co-
ordinates and/or nodal loads) so as to keep it simple and make it Git (https://git-scm.
com/)-friendly (rule of generation). The only link between the mesh and the FeenoX input
file is through physical groups (in the case above left and right) used to set boundary
conditions and/or material properties.

Another design-basis decision is that similar problems ought to have similar inputs (rule
of least surprise). So in order to have a space-dependent conductivity, we only have to

http://gmsh.info/
https://github.com/nschloe/meshio
https://github.com/nschloe/meshio
https://git-scm.com/
https://git-scm.com/

Chapter 2: Introduction 4

replace one line in the input above: instead of defining a scalar k we define a function of x
(we also update the output to show the analytical solution as well):

PROBLEM thermal 1D

READ_MESH slab.msh

k(x) = 1+x # space-dependent conductivity

BC left T=0

BC right T=1

SOLVE_PROBLEM

PRINT T(1/2) log(1+1/2)/log(2) # print numerical and analytical solutions

$ feenox thermal-1d-dirichlet-space-k.fee

0.584959 0.584963

$

The other main decision in FeenoX design is an everything is an expression design
principle, meaning that any numerical input can be an algebraic expression (e.g. T(1/2)
is the same as T(0.5)). If we want to have a temperature-dependent conductivity (which
renders the problem non-linear) we can take advantage of the fact that T (x) is available
not only as an argument to PRINT but also for the definition of algebraic functions:

PROBLEM thermal 1D

READ_MESH slab.msh

k(x) = 1+T(x) # temperature-dependent conductivity

BC left T=0

BC right T=1

SOLVE_PROBLEM

PRINT T(1/2) sqrt(1+(3*0.5))-1 # print numerical and analytical solutions

$ feenox thermal-1d-dirichlet-temperature-k.fee

0.581139 0.581139

$

For example, let us consider the famous chaotic Lorenz’ dynamical system (http://
en.wikipedia.org/wiki/Lorenz_system). Here is one way of getting an image of the
butterfly-shaped attractor using FeenoX to compute it and Gnuplot (http://www.gnuplot.
info/) to draw it. Solve

ẋ = σ · (y − x)
ẏ = x · (r − z)− y
ż = xy − bz for 0 < t < 40 with initial conditions

x(0) = −11
y(0) = −16
z(0) = 22.5 and σ = 10, r = 28 and b = 8/3, which are the classical parameters
that generate the butterfly as presented by Edward Lorenz back in his seminal 1963 pa-
per Deterministic non-periodic flow (http://journals.ametsoc.org/doi/abs/10.1175/
1520-0469%281963%29020%3C0130%3ADNF%3E2.0.CO%3B2).

The following ASCII input file ressembles the parameters, inital conditions and differ-
ential equations of the problem as naturally as possible:

PHASE_SPACE x y z # Lorenz attractor’s phase space is x-y-z

end_time = 40 # we go from t=0 to 40 non-dimensional units

sigma = 10 # the original parameters from the 1963 paper

r = 28

b = 8/3

x_0 = -11 # initial conditions

http://en.wikipedia.org/wiki/Lorenz_system
http://en.wikipedia.org/wiki/Lorenz_system
http://www.gnuplot.info/
http://www.gnuplot.info/
http://journals.ametsoc.org/doi/abs/10.1175/1520-0469%281963%29020%3C0130%3ADNF%3E2.0.CO%3B2
http://journals.ametsoc.org/doi/abs/10.1175/1520-0469%281963%29020%3C0130%3ADNF%3E2.0.CO%3B2

Chapter 2: Introduction 5

y_0 = -16

z_0 = 22.5

the dynamical system’s equations written as naturally as possible

x_dot = sigma*(y - x)

y_dot = x*(r - z) - y

z_dot = x*y - b*z

PRINT t x y z # four-column plain-ASCII output

-20
-15

-10
-5

0
5

10
15

20 -30
-25

-20
-15

-10
-5

0
5

10
15

20
25

0

5

10

15

20

25

30

35

40

45

50

x

y

z

The Lorenz attractor solved with FeenoX and drawn with Gnuplot

Indeed, when executing FeenoX with this input file, we get four ASCII columns (t, x, y
and z) which we can then redirect to a file and plot it with a standard tool such as Gnuplot
((http://www.gnuplot.info/)). Note the importance of relying on plain ASCII text for-
mats both for input and output, as recommended by the UNIX philosophy and the rule of
composition: other programs can easily create inputs for FeenoX and other programs can
easily understand FeenoX’ outputs. This is essentially how UNIX filters and pipes work.

Let us solve the linear elasticity benchmark problem NAFEMS LE10 (https://www.
nafems.org/publications/resource_center/p18/) “Thick plate pressure.” Assuming a
proper mesh has already been created in Gmsh, note how well the FeenoX input file matches
the problem statement from @fig:nafems-le10-problem-input:
NAFEMS Benchmark LE-10: thick plate pressure

PROBLEM mechanical DIMENSIONS 3

READ_MESH nafems-le10.msh # mesh in millimeters

LOADING: uniform normal pressure on the upper surface

BC upper p=1 # 1 Mpa

BOUNDARY CONDITIONS:

BC DCD’C’ v=0 # Face DCD’C’ zero y-displacement

BC ABA’B’ u=0 # Face ABA’B’ zero x-displacement

BC BCB’C’ u=0 v=0 # Face BCB’C’ x and y displ. fixed

BC midplane w=0 # z displacements fixed along mid-plane

(http://www.gnuplot.info/)
(http://www.gnuplot.info/)
https://www.nafems.org/publications/resource_center/p18/
https://www.nafems.org/publications/resource_center/p18/

Chapter 2: Introduction 6

MATERIAL PROPERTIES: isotropic single-material properties

E = 210e3 # Young modulus in MPa

nu = 0.3 # Poisson’s ratio

SOLVE_PROBLEM # solve!

print the direct stress y at D (and nothing more)

PRINT "σ_y @ D = " sigmay(2000,0,300) "MPa"

The problem asks for the normal stress in the y direction σy at point “D,” which is what
FeenoX writes (and nothing else, rule of economy):

$ feenox nafems-le10.fee

sigma_y @ D = -5.38016 MPa

$

Also note that since there is only one material there is no need to do an explicit link
between material properties and physical volumes in the mesh (rule of simplicity). And
since the properties are uniform and isotropic, a single global scalar for E and a global
single scalar for ν are enough.

The NAFEMS LE10 problem statement and the corresponding FeenoX input

Chapter 2: Introduction 7

Normal stress σy refined around point D over 5,000x-warped displacements for LE10
created with Paraview

For the sake of visual completeness, post-processing data with the scalar distribution of
σy and the vector field of displacements [u, v, w] can be created by adding one line to the
input file:
WRITE_MESH nafems-le10.vtk sigmay VECTOR u v w

This VTK file can then be post-processed to create interactive 3D views, still screenshots,
browser and mobile-friendly webGL models, etc. In particular, using Paraview (https://
www.paraview.org) one can get a colorful bitmapped PNG (the displacements are far more
interesting than the stresses in this problem).

Please note the following two points about both cases above:

1. The input files are very similar to the statements of each problem in plain English
words (rule of clarity). Those with some experience may want to compare them to the
inputs decks (sic) needed for other common FEA programs.

2. By design, 100% of FeenoX’ output is controlled by the user. Had there not been any
PRINT or WRITE_MESH instructions, the output would have been empty, following the
rule of silence. This is a significant change with respect to traditional engineering codes
that date back from times when one CPU hour was worth dozens (or even hundreds)
of engineering hours. At that time, cognizant engineers had to dig into thousands of
lines of data to search for a single individual result. Nowadays, following the rule of
economy, it is actually far easier to ask the code to write only what is needed in the
particular format that suits the user.

Some basic rules are

• FeenoX is just a solver working as a transfer function between input and output files.
+------------+

mesh (*.msh) } | | { terminal

data (*.dat) } input ----> | FeenoX |----> output { data files

input (*.fee) } | | { post (vtk/msh)

+------------+

https://www.paraview.org
https://www.paraview.org

Chapter 2: Introduction 8

Following the rules of separation, parsimony and diversity, there is no embedded graph-
ical interface but means of using generic pre and post processing tools—in partic-
ular, Gmsh (http://gmsh.info/) and Paraview (https://www.paraview.org/) re-
spectively. See also CAEplex (www.caeplex.com) for a web-based interface.

• The input files should be syntactically sugared (https://en.wikipedia.org/wiki/
Syntactic_sugar) so as to be as self-describing as possible.

• Simple problems ought to need simple input files.

• Similar problems ought to need similar input files.

• Everything is an expression. Whenever a number is expected, an algebraic expression
can be entered as well. Variables, vectors, matrices and functions are supported. Here
is how to replace the boundary condition on the right side of the slab above with a
radiation condition:
sigma = 1 # non-dimensional stefan-boltzmann constant

e = 0.8 # emissivity

Tinf=1 # non-dimensional reference temperature

BC right q=sigma*e*(Tinf^4-T(x)^4)

This “everything is an expression” principle directly allows the application of the
Method of Manufactured Solutions for code verification.

• FeenoX should run natively in the cloud and be able to massively scale in parallel. See
the Software Requirements Specification (doc/sds.md) and the Software Development
Specification (doc/sds.md) for details.

Since it is free (as in freedom (https://www.gnu.org/philosophy/free-sw.en.html))
and open source, contributions to add features (and to fix bugs) are welcome. In particular,
each kind of problem supported by FeenoX (thermal, mechanical, modal, etc.) has a subdi-
rectory of source files which can be used as a template to add new problems, as implied in
the “community-contributed problems” bullet above (rules of modularity and extensibility).
See the documentation (doc) for details about how to contribute.

http://gmsh.info/
https://www.paraview.org/
www.caeplex.com
https://en.wikipedia.org/wiki/Syntactic_sugar
https://en.wikipedia.org/wiki/Syntactic_sugar
doc/sds.md
doc/sds.md
doc/sds.md
https://www.gnu.org/philosophy/free-sw.en.html
doc

9

3 Running feenox

3.1 Invocation

The format for running the feenox program is:

feenox [options] inputfile [optional_extra_arguments] ...

The feenox executable supports the following options:

feenox [options] inputfile [replacement arguments] [petsc options]

-h, --help
display options and detailed explanations of commmand-line usage

-v, --version
display brief version information and exit

-V, --versions
display detailed version information

--pdes

list the types of PROBLEMs that FeenoX can solve, one per line

--progress

print ASCII progress bars when solving PDEs

--mumps

ask PETSc to use the direct linear solver MUMPS

--linear

force FeenoX to solve the PDE problem as linear

--non-linear

force FeenoX to solve the PDE problem as non-linear

Instructions will be read from standard input if “-” is passed as inputfile, i.e.

$ echo ’PRINT 2+2’ | feenox -

4

The optional [replacement arguments] part of the command line mean that each ar-
gument after the input file that does not start with an hyphen will be expanded verbatim
in the input file in each occurrence of $1, $2, etc. For example

$ echo ’PRINT $1+$2’ | feenox - 3 4

7

PETSc and SLEPc options can be passed in [petsc options] as well, with the difference
that two hyphens have to be used instead of only once. For example, to pass the PETSc
option -ksp_view the actual FeenoX invocation should be

$ feenox input.fee --ksp_view

For PETSc options that take values, en equal sign has to be used:

$ feenox input.fee --mg_levels_pc_type=sor

See https://www.seamplex.com/feenox/examples for annotated examples.

https://www.seamplex.com/feenox/examples

Chapter 3: Running feenox 10

3.2 Compilation

These detailed compilation instructions are aimed at amd64 Debian-based GNU/Linux dis-
tributions. The compilation procedure follows the POSIX standard (https://en.
wikipedia.org/wiki/POSIX), so it should work in other operating systems and architec-
tures as well. Distributions not using apt for packages (i.e. yum) should change the package
installation commands (and possibly the package names). The instructions should also
work for in MacOS, although the apt-get commands should be replaced by brew or sim-
ilar. Same for Windows under Cygwin (https://www.cygwin.com/), the packages should
be installed through the Cygwin installer. WSL was not tested, but should work as well.

3.2.1 Quickstart

Note that the quickest way to get started is to download (https://www.seamplex.com/
feenox/#download) an already-compiled statically-linked binary executable. Note that
getting a binary is the quickest and easiest way to go but it is the less flexible one. Mind
the following instructions if a binary-only option is not suitable for your workflow and/or
you do need to compile the source code from scratch.

On a GNU/Linux box (preferably Debian-based), follow these quick steps. See
@sec:details for the actual detailed explanations.

To compile the Git repository, proceed as follows. This procedure does need git and
autoconf but new versions can be pulled and recompiled easily. If something goes wrong
and you get an error, do not hesitate to ask in FeenoX’ discussion page (https://github.
com/seamplex/feenox/discussions).

1. Install mandatory dependencies
sudo apt-get install gcc make git automake autoconf libgsl-dev

If you cannot install libgsl-dev but still have git and the build toolchain, you can
have the configure script to download and compile it for you. See point 4 below.

2. Install optional dependencies (of course these are optional but recommended)
sudo apt-get install libsundials-dev petsc-dev slepc-dev

3. Clone Github repository
git clone https://github.com/seamplex/feenox

4. Boostrap, configure, compile & make
cd feenox

./autogen.sh

./configure

make -j4

If you cannot (or do not want) to use libgsl-dev from a package repository, call
configure with --enable-download-gsl:
./configure --enable-download-gsl

If you do not have Internet access, get the tarball manually, copy it to the same directory
as configure and run again. See the detailed compilation instructions (compilation.
md) for an explanation.

5. Run test suite (optional)
make check

6. Install the binary system wide (optional)
sudo make install

https://en.wikipedia.org/wiki/POSIX
https://en.wikipedia.org/wiki/POSIX
https://www.cygwin.com/
https://www.seamplex.com/feenox/#download
https://www.seamplex.com/feenox/#download
https://github.com/seamplex/feenox/discussions
https://github.com/seamplex/feenox/discussions
compilation.md
compilation.md

Chapter 3: Running feenox 11

To stay up to date, pull and then autogen, configure and make (and optionally install):

git pull

./autogen.sh; ./configure; make -j4

sudo make install

3.2.2 Detailed configuration and compilation

The main target and development environment is Debian GNU/Linux (https://www.
debian.org/), although it should be possible to compile FeenoX in any free GNU/Linux
variant (and even the in non-free MacOS and/or Windows platforms) running in virtually
any hardware platform. FeenoX can run be run either in HPC cloud servers or a Raspberry
Pi, and almost everything that sits in the middle.

Following the UNIX philosophy discussed in the SDS (SDS.md), FeenoX re-uses a lot of
already-existing high-quality free and open source libraries that implement a wide variety
of mathematical operations. This leads to a number of dependencies that FeenoX needs in
order to implement certain features.

There is only one dependency that is mandatory, namely GNU GSL (https://www.
gnu.org/software/gsl/) (see @sec:gsl), which if it not found then FeenoX cannot be com-
piled. All other dependencies are optional, meaning that FeenoX can be compiled but its
capabilities will be partially reduced.

As per the SRS (SRS.md), all dependencies have to be available on mainstream
GNU/Linux distributions and have to be free and open source software. But they can also
be compiled from source in case the package repositories are not available or customized
compilation flags are needed (i.e. optimization or debugging settings).

In particular, PETSc (https://petsc.org/release/) (and SLEPc (https://slepc.
upv.es/)) also depend on other mathematical libraries to perform particular operations
such as low-level linear algebra operations. These extra dependencies can be either free
(such as LAPACK (http://www.netlib.org/lapack/)) or non-free (such as Intel’s MKL
(https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl.
html)), but there is always at least one combination of a working setup that involves only
free and open source software which is compatible with FeenoX licensing terms (GPLv3+).
See the documentation of each package for licensing details.

3.2.2.1 Mandatory dependencies

FeenoX has one mandatory dependency for run-time execution and the standard build
toolchain for compilation. It is written in C99 so only a C compiler is needed, although
make is also required. Free and open source compilers are favored. The usual C compiler is
gcc but clang can also be used. Nevertheless, the non-free icc has also been tested.

Note that there is no need to have a Fortran nor a C++ compiler to build FeenoX. They
might be needed to build other dependencies (such as PETSc and its dependencies), but
not to compile FeenoX if all the dependencies are installed from the oeprating system’s
package repositories. In case the build toolchain is not already installed, do so with

sudo apt-get install gcc make

If the source is to be fetched from the Git repository (https://github.com/seamplex/
feenox/) then not only is git needed but also autoconf and automake since the configure
script is not stored in the Git repository but the autogen.sh script that bootstraps the tree

https://www.debian.org/
https://www.debian.org/
SDS.md
https://www.gnu.org/software/gsl/
https://www.gnu.org/software/gsl/
SRS.md
https://petsc.org/release/
https://slepc.upv.es/
https://slepc.upv.es/
http://www.netlib.org/lapack/
https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl.html
https://github.com/seamplex/feenox/
https://github.com/seamplex/feenox/

Chapter 3: Running feenox 12

and creates it. So if instead of compiling a source tarball one wants to clone from GitHub,
these packages are also mandatory:
sudo apt-get install git automake autoconf

Again, chances are that any existing GNU/Linux box has all these tools already installed.
The GNU Scientific Library The only run-time dependency is GNU GSL (https://www.
gnu.org/software/gsl/) (not to be confused with Microsoft GSL (https://github.com/
microsoft/GSL)). It can be installed with
sudo apt-get install libgsl-dev

In case this package is not available or you do not have enough permissions to install
system-wide packages, there are two options.

1. Pass the option --enable-download-gsl to the configure script below.

2. Manually download, compile and install GNU GSL (https://www.gnu.org/software/
gsl/)

If the configure script cannot find both the headers and the actual library, it will refuse
to proceed. Note that the FeenoX binaries already contain a static version of the GSL so it
is not needed to have it installed in order to run the statically-linked binaries.

3.2.2.2 Optional dependencies

FeenoX has three optional run-time dependencies. It can be compiled without any of these,
but functionality will be reduced:

• SUNDIALS (https://computing.llnl.gov/projects/sundials) provides support
for solving systems of ordinary differential equations (ODEs) or differential-algebraic
equations (DAEs). This dependency is needed when running inputs with the
PHASE_SPACE keyword.

• PETSc (https://petsc.org/) provides support for solving partial differential equa-
tions (PDEs). This dependency is needed when running inputs with the PROBLEM

keyword.

• SLEPc (https://slepc.upv.es/) provides support for solving eigen-value problems
in partial differential equations (PDEs). This dependency is needed for inputs with
PROBLEM types with eigen-value formulations such as modal and neutron_transport.

In absence of all these, FeenoX can still be used to

• solve general mathematical problems such as the ones to compute the Fibonacci se-
quence (https://www.seamplex.com/feenox/examples/#the-fibonacci-sequence)
or the Logistic map (https://www.seamplex.com/feenox/examples/#
the-logistic-map),

• operate on functions, either algebraically or point-wise interpolated such as Computing
the derivative of a function as a UNIX filter (https://www.seamplex.com/feenox/
examples/#computing-the-derivative-of-a-function-as-a-unix-filter)

• read, operate over and write meshes,

• etc.

These optional dependencies have to be installed separately. There is no option to
have configure to download them as with --enable-download-gsl. When running the
test suite (@sec:test-suite), those tests that need an optional dependency which was not

https://www.gnu.org/software/gsl/
https://www.gnu.org/software/gsl/
https://github.com/microsoft/GSL
https://github.com/microsoft/GSL
https://www.gnu.org/software/gsl/
https://www.gnu.org/software/gsl/
https://computing.llnl.gov/projects/sundials
https://petsc.org/
https://slepc.upv.es/
https://www.seamplex.com/feenox/examples/#the-fibonacci-sequence
https://www.seamplex.com/feenox/examples/#the-fibonacci-sequence
https://www.seamplex.com/feenox/examples/#the-logistic-map
https://www.seamplex.com/feenox/examples/#the-logistic-map
https://www.seamplex.com/feenox/examples/#computing-the-derivative-of-a-function-as-a-unix-filter
https://www.seamplex.com/feenox/examples/#computing-the-derivative-of-a-function-as-a-unix-filter
https://www.seamplex.com/feenox/examples/#computing-the-derivative-of-a-function-as-a-unix-filter

Chapter 3: Running feenox 13

found at compile time will be skipped. SUNDIALS SUNDIALS (https://computing.
llnl.gov/projects/sundials) is a SUite of Nonlinear and DIfferential/ALgebraic equa-
tion Solvers. It is used by FeenoX to solve dynamical systems casted as DAEs with the
keyword PHASE_SPACE (https://www.seamplex.com/feenox/doc/feenox-manual.html#
phase_space), like the Lorenz system (https://www.seamplex.com/feenox/examples/#
lorenz-attractor-the-one-with-the-butterfly).

Install either by doing

sudo apt-get install libsundials-dev

or by following the instructions in the documentation. PETSc The Extensible Toolkit
for Scientific Computation, pronounced PET-see (/pt-si/), is a suite of data structures and
routines for the scalable (parallel) solution of scientific applications modeled by partial
differential equations. It is used by FeenoX to solve PDEs with the keyword PROBLEM

(https://www.seamplex.com/feenox/doc/feenox-manual.html#problem), like the
NAFEMS LE10 benchmark problem (https://www.seamplex.com/feenox/examples/#
nafems-le10-thick-plate-pressure-benchmark).

Install either by doing

sudo apt-get install petsc-dev

or by following the instructions in the documentation.

Note that

• Configuring and compiling PETSc from scratch might be difficult the first time. It has
a lot of dependencies and options. Read the official documentation (https://petsc.
org/release/install/) for a detailed explanation.

• There is a huge difference in efficiency between using PETSc compiled with debugging
symbols and with optimization flags. Make sure to configure --with-debugging=0 for
FeenoX production runs and leave the debugging symbols (which is the default) for
development and debugging only.

• FeenoX needs PETSc to be configured with real double-precision scalars. It will com-
pile but will complain at run-time when using complex and/or single or quad-precision
scalars.

• FeenoX honors the PETSC_DIR and PETSC_ARCH environment variables when execut-
ing configure. If these two do not exist or are empty, it will try to use the default
system-wide locations (i.e. the petsc-dev package).

SLEPc The Scalable Library for Eigenvalue Problem Computations (https://slepc.
upv.es/), is a software library for the solution of large scale sparse eigenvalue problems
on parallel computers. It is used by FeenoX to solve PDEs with the keyword PROBLEM

(https://www.seamplex.com/feenox/doc/feenox-manual.html#problem) that need
eigen-value computations, such as modal analysis of a cantilevered beam (https://www.
seamplex.com/feenox/examples/#five-natural-modes-of-a-cantilevered-wire).

Install either by doing

sudo apt-get install slepc-dev

or by following the instructions in the documentation.

Note that

• SLEPc is an extension of PETSc so the latter has to be already installed and configured.

https://computing.llnl.gov/projects/sundials
https://computing.llnl.gov/projects/sundials
https://www.seamplex.com/feenox/doc/feenox-manual.html#phase_space
https://www.seamplex.com/feenox/doc/feenox-manual.html#phase_space
https://www.seamplex.com/feenox/examples/#lorenz-attractor-the-one-with-the-butterfly
https://www.seamplex.com/feenox/examples/#lorenz-attractor-the-one-with-the-butterfly
(https://petsc.org/)
(https://petsc.org/)
https://www.seamplex.com/feenox/doc/feenox-manual.html#problem
https://www.seamplex.com/feenox/doc/feenox-manual.html#problem
https://www.seamplex.com/feenox/examples/#nafems-le10-thick-plate-pressure-benchmark
https://www.seamplex.com/feenox/examples/#nafems-le10-thick-plate-pressure-benchmark
https://petsc.org/release/install/
https://petsc.org/release/install/
https://slepc.upv.es/
https://slepc.upv.es/
https://www.seamplex.com/feenox/doc/feenox-manual.html#problem
https://www.seamplex.com/feenox/doc/feenox-manual.html#problem
https://www.seamplex.com/feenox/examples/#five-natural-modes-of-a-cantilevered-wire
https://www.seamplex.com/feenox/examples/#five-natural-modes-of-a-cantilevered-wire

Chapter 3: Running feenox 14

• FeenoX honors the SLEPC_DIR environment variable when executing configure. If it
does not exist or is empty it will try to use the default system-wide locations (i.e. the
slepc-dev package).

• If PETSc was configured with --download-slepc then the SLEPC_DIR variable has to
be set to the directory inside PETSC_DIR where SLEPc was cloned and compiled.

3.2.2.3 FeenoX source code

There are two ways of getting FeenoX’ source code:

1. Cloning the GitHub repository at https://github.com/seamplex/feenox

2. Downloading a source tarball from https://seamplex.com/feenox/dist/src/

Git repository The main Git repository is hosted on GitHub at https://github.com/
seamplex/feenox. It is public so it can be cloned either through HTTPS or SSH with-
out needing any particular credentials. It can also be forked freely. See the Programming
Guide (programming.md) for details about pull requests and/or write access to the main
repository.

Ideally, the main branch should have a usable snapshot. All other branches can contain
code that might not compile or might not run or might not be tested. If you find a commit
in the main branch that does not pass the tests, please report it in the issue tracker ASAP.

After cloning the repository
git clone https://github.com/seamplex/feenox

the autogen.sh script has to be called to bootstrap the working tree, since the configure
script is not stored in the repository but created from configure.ac (which is in the
repository) by autogen.sh.

Similarly, after updating the working tree with
git pull

it is recommended to re-run the autogen.sh script. It will do a make clean and re-
compute the version string. Source tarballs When downloading a source tarball, there is no
need to run autogen.sh since the configure script is already included in the tarball. This
method cannot update the working tree. For each new FeenoX release, the whole source
tarball has to be downloaded again.

3.2.2.4 Configuration

To create a proper Makefile for the particular architecture, dependencies and compilation
options, the script configure has to be executed. This procedure follows the GNU Coding
Standards (https://www.gnu.org/prep/standards/).
./configure

Without any particular options, configure will check if the mandatory GNU Scientific
Library (https://www.gnu.org/software/gsl/) is available (both its headers and run-
time library). If it is not, then the option --enable-download-gsl can be used. This option
will try to use wget (which should be installed) to download a source tarball, uncompress,
configure and compile it. If these steps are successful, this GSL will be statically linked into
the resulting FeenoX executable. If there is no internet connection, the configure script
will say that the download failed. In that case, get the indicated tarball file manually, copy
it into the current directory and re-run ./configure.

https://github.com/seamplex/feenox
https://seamplex.com/feenox/dist/src/
https://github.com/seamplex/feenox
https://github.com/seamplex/feenox
programming.md
programming.md
https://www.gnu.org/prep/standards/
https://www.gnu.org/prep/standards/
https://www.gnu.org/software/gsl/
https://www.gnu.org/software/gsl/

Chapter 3: Running feenox 15

The script will also check for the availability of optional dependencies. At the end of the
execution, a summary of what was found (or not) is printed in the standard output:

$./configure

[...]

Summary of dependencies

GNU Scientific Library from system

SUNDIALS IDA yes

PETSc yes /usr/lib/petsc

SLEPc no

[...]

If for some reason one of the optional dependencies is available but FeenoX should
not use it, then pass --without-sundials, --without-petsc and/or --without-slepc as
arguments. For example

$./configure --without-sundials --without-petsc

[...]

Summary of dependencies

GNU Scientific Library from system

SUNDIALS no

PETSc no

SLEPc no

[...]

If configure complains about contradicting values from the cached ones, run autogen.sh

again before configure and/or clone/uncompress the source tarball in a fresh location.

To see all the available options run

./configure --help

3.2.2.5 Source code compilation

After the successful execution of configure, a Makefile is created. To compile FeenoX,
just execute

make

Compilation should take a dozen of seconds. It can be even sped up by using the -j

option

make -j8

The binary executable will be located in the src directory but a copy will be made in
the base directory as well. Test it by running without any arguments

$./feenox

FeenoX v0.2.14-gbbf48c9

a free no-fee no-X uniX-like finite-element(ish) computational engineering tool

usage: feenox [options] inputfile [replacement arguments] [petsc options]

-h, --help display options and detailed explanations of commmand-line usage

-v, --version display brief version information and exit

-V, --versions display detailed version information

Run with --help for further explanations.

$

Chapter 3: Running feenox 16

The -v (or --version) option shows the version and a copyright notice:
$./feenox -v

FeenoX v0.2.14-gbbf48c9

a free no-fee no-X uniX-like finite-element(ish) computational engineering tool

Copyright c© 2009--2022 Seamplex, https://seamplex.com/feenox

GNU General Public License v3+, https://www.gnu.org/licenses/gpl.html.

FeenoX is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law.

$

The -V (or --versions) option shows the dates of the last commits, the compiler options
and the versions of the linked libraries:
$./feenox -V

FeenoX v0.1.24-g6cfe063

a free no-fee no-X uniX-like finite-element(ish) computational engineering tool

Last commit date : Sun Aug 29 11:34:04 2021 -0300

Build date : Sun Aug 29 11:44:50 2021 -0300

Build architecture : linux-gnu x86_64

Compiler version : gcc (Debian 10.2.1-6) 10.2.1 20210110

Compiler expansion : gcc -Wl,-z,relro -I/usr/include/x86_64-linux-gnu/mpich -L/usr/lib/x86_64-linux-gnu -lmpich

Compiler flags : -O3

Builder : gtheler@chalmers

GSL version : 2.6

SUNDIALS version : 4.1.0

PETSc version : Petsc Release Version 3.14.5, Mar 03, 2021

PETSc arch :

PETSc options : --build=x86_64-linux-gnu --prefix=/usr --includedir=${prefix}/include --mandir=${prefix}/share/man --infodir=${prefix}/share/info --sysconfdir=/etc --localstatedir=/var --with-option-checking=0 --with-silent-rules=0 --libdir=${prefix}/lib/x86_64-linux-gnu --runstatedir=/run --with-maintainer-mode=0 --with-dependency-tracking=0 --with-debugging=0 --shared-library-extension=_real --with-shared-libraries --with-pic=1 --with-cc=mpicc --with-cxx=mpicxx --with-fc=mpif90 --with-cxx-dialect=C++11 --with-opencl=1 --with-blas-lib=-lblas --with-lapack-lib=-llapack --with-scalapack=1 --with-scalapack-lib=-lscalapack-openmpi --with-ptscotch=1 --with-ptscotch-include=/usr/include/scotch --with-ptscotch-lib="-lptesmumps -lptscotch -lptscotcherr" --with-fftw=1 --with-fftw-include="[]" --with-fftw-lib="-lfftw3 -lfftw3_mpi" --with-superlu_dist=1 --with-superlu_dist-include=/usr/include/superlu-dist --with-superlu_dist-lib=-lsuperlu_dist --with-hdf5-include=/usr/include/hdf5/openmpi --with-hdf5-lib="-L/usr/lib/x86_64-linux-gnu/hdf5/openmpi -L/usr/lib/x86_64-linux-gnu/openmpi/lib -lhdf5 -lmpi" --CXX_LINKER_FLAGS=-Wl,--no-as-needed --with-hypre=1 --with-hypre-include=/usr/include/hypre --with-hypre-lib=-lHYPRE_core --with-mumps=1 --with-mumps-include="[]" --with-mumps-lib="-ldmumps -lzmumps -lsmumps -lcmumps -lmumps_common -lpord" --with-suitesparse=1 --with-suitesparse-include=/usr/include/suitesparse --with-suitesparse-lib="-lumfpack -lamd -lcholmod -lklu" --with-superlu=1 --with-superlu-include=/usr/include/superlu --with-superlu-lib=-lsuperlu --prefix=/usr/lib/petscdir/petsc3.14/x86_64-linux-gnu-real --PETSC_ARCH=x86_64-linux-gnu-real CFLAGS="-g -O2 -ffile-prefix-map=/build/petsc-pVufYp/petsc-3.14.5+dfsg1=. -flto=auto -ffat-lto-objects -fstack-protector-strong -Wformat -Werror=format-security -fPIC" CXXFLAGS="-g -O2 -ffile-prefix-map=/build/petsc-pVufYp/petsc-3.14.5+dfsg1=. -flto=auto -ffat-lto-objects -fstack-protector-strong -Wformat -Werror=format-security -fPIC" FCFLAGS="-g -O2 -ffile-prefix-map=/build/petsc-pVufYp/petsc-3.14.5+dfsg1=. -flto=auto -ffat-lto-objects -fstack-protector-strong -fPIC -ffree-line-length-0" FFLAGS="-g -O2 -ffile-prefix-map=/build/petsc-pVufYp/petsc-3.14.5+dfsg1=. -flto=auto -ffat-lto-objects -fstack-protector-strong -fPIC -ffree-line-length-0" CPPFLAGS="-Wdate-time -D_FORTIFY_SOURCE=2" LDFLAGS="-Wl,-Bsymbolic-functions -flto=auto -Wl,-z,relro -fPIC" MAKEFLAGS=w

SLEPc version : SLEPc Release Version 3.14.2, Feb 01, 2021

$

3.2.2.6 Test suite

The test (https://github.com/seamplex/feenox/tree/main/tests) directory contains
a set of test cases whose output is known so that unintended regressions can be detected
quickly (see the programming guide (programming.md) for more information). The test
suite ought to be run after each modification in FeenoX’ source code. It consists of a set
of scripts and input files needed to solve dozens of cases. The output of each execution is
compared to a reference solution. In case the output does not match the reference, the test
suite fails.

After compiling FeenoX as explained in @sec:compilation, the test suite can be run with
make check. Ideally everything should be green meaning the tests passed:
$ make check

Making check in src

make[1]: Entering directory ’/home/gtheler/codigos/feenox/src’

make[1]: Nothing to be done for ’check’.

make[1]: Leaving directory ’/home/gtheler/codigos/feenox/src’

make[1]: Entering directory ’/home/gtheler/codigos/feenox’

cp -r src/feenox .

make check-TESTS

make[2]: Entering directory ’/home/gtheler/codigos/feenox’

make[3]: Entering directory ’/home/gtheler/codigos/feenox’

XFAIL: tests/abort.sh

PASS: tests/algebraic_expr.sh

PASS: tests/beam-modal.sh

https://github.com/seamplex/feenox/tree/main/tests
programming.md

Chapter 3: Running feenox 17

PASS: tests/beam-ortho.sh

PASS: tests/builtin.sh

PASS: tests/cylinder-traction-force.sh

PASS: tests/default_argument_value.sh

PASS: tests/expressions_constants.sh

PASS: tests/expressions_variables.sh

PASS: tests/expressions_functions.sh

PASS: tests/exp.sh

PASS: tests/i-beam-euler-bernoulli.sh

PASS: tests/iaea-pwr.sh

PASS: tests/iterative.sh

PASS: tests/fit.sh

PASS: tests/function_algebraic.sh

PASS: tests/function_data.sh

PASS: tests/function_file.sh

PASS: tests/function_vectors.sh

PASS: tests/integral.sh

PASS: tests/laplace2d.sh

PASS: tests/materials.sh

PASS: tests/mesh.sh

PASS: tests/moment-of-inertia.sh

PASS: tests/nafems-le1.sh

PASS: tests/nafems-le10.sh

PASS: tests/nafems-le11.sh

PASS: tests/nafems-t1-4.sh

PASS: tests/nafems-t2-3.sh

PASS: tests/neutron_diffusion_src.sh

PASS: tests/neutron_diffusion_keff.sh

PASS: tests/parallelepiped.sh

PASS: tests/point-kinetics.sh

PASS: tests/print.sh

PASS: tests/thermal-1d.sh

PASS: tests/thermal-2d.sh

PASS: tests/trig.sh

PASS: tests/two-cubes-isotropic.sh

PASS: tests/two-cubes-orthotropic.sh

PASS: tests/vector.sh

XFAIL: tests/xfail-few-properties-ortho-young.sh

XFAIL: tests/xfail-few-properties-ortho-poisson.sh

XFAIL: tests/xfail-few-properties-ortho-shear.sh

==

Testsuite summary for feenox v0.2.6-g3237ce9

==

TOTAL: 43

PASS: 39

SKIP: 0

XFAIL: 4

FAIL: 0

XPASS: 0

ERROR: 0

==

make[3]: Leaving directory ’/home/gtheler/codigos/feenox’

make[2]: Leaving directory ’/home/gtheler/codigos/feenox’

make[1]: Leaving directory ’/home/gtheler/codigos/feenox’

$

The XFAIL result means that those cases are expected to fail (they are there to test
if FeenoX can handle errors). Failure would mean they passed. In case FeenoX was not

Chapter 3: Running feenox 18

compiled with any optional dependency, the corresponding tests will be skipped. Skipped
tests do not mean any failure, but that the compiled FeenoX executable does not have the
full capabilities. For example, when configuring with ./configure --without-petsc (but
with SUNDIALS), the test suite output should be a mixture of green and blue:

$./configure --without-petsc

[...]

configure: creating ./src/version.h

Summary of dependencies

GNU Scientific Library from system

SUNDIALS yes

PETSc no

SLEPc no

Compiler gcc

checking that generated files are newer than configure... done

configure: creating ./config.status

config.status: creating Makefile

config.status: creating src/Makefile

config.status: creating doc/Makefile

config.status: executing depfiles commands

$ make

[...]

$ make check

Making check in src

make[1]: Entering directory ’/home/gtheler/codigos/feenox/src’

make[1]: Nothing to be done for ’check’.

make[1]: Leaving directory ’/home/gtheler/codigos/feenox/src’

make[1]: Entering directory ’/home/gtheler/codigos/feenox’

cp -r src/feenox .

make check-TESTS

make[2]: Entering directory ’/home/gtheler/codigos/feenox’

make[3]: Entering directory ’/home/gtheler/codigos/feenox’

XFAIL: tests/abort.sh

PASS: tests/algebraic_expr.sh

SKIP: tests/beam-modal.sh

SKIP: tests/beam-ortho.sh

PASS: tests/builtin.sh

SKIP: tests/cylinder-traction-force.sh

PASS: tests/default_argument_value.sh

PASS: tests/expressions_constants.sh

PASS: tests/expressions_variables.sh

PASS: tests/expressions_functions.sh

PASS: tests/exp.sh

SKIP: tests/i-beam-euler-bernoulli.sh

SKIP: tests/iaea-pwr.sh

PASS: tests/iterative.sh

PASS: tests/fit.sh

PASS: tests/function_algebraic.sh

PASS: tests/function_data.sh

PASS: tests/function_file.sh

PASS: tests/function_vectors.sh

PASS: tests/integral.sh

SKIP: tests/laplace2d.sh

PASS: tests/materials.sh

PASS: tests/mesh.sh

PASS: tests/moment-of-inertia.sh

Chapter 3: Running feenox 19

SKIP: tests/nafems-le1.sh

SKIP: tests/nafems-le10.sh

SKIP: tests/nafems-le11.sh

SKIP: tests/nafems-t1-4.sh

SKIP: tests/nafems-t2-3.sh

SKIP: tests/neutron_diffusion_src.sh

SKIP: tests/neutron_diffusion_keff.sh

SKIP: tests/parallelepiped.sh

PASS: tests/point-kinetics.sh

PASS: tests/print.sh

SKIP: tests/thermal-1d.sh

SKIP: tests/thermal-2d.sh

PASS: tests/trig.sh

SKIP: tests/two-cubes-isotropic.sh

SKIP: tests/two-cubes-orthotropic.sh

PASS: tests/vector.sh

SKIP: tests/xfail-few-properties-ortho-young.sh

SKIP: tests/xfail-few-properties-ortho-poisson.sh

SKIP: tests/xfail-few-properties-ortho-shear.sh

==

Testsuite summary for feenox v0.2.6-g3237ce9

==

TOTAL: 43

PASS: 21

SKIP: 21

XFAIL: 1

FAIL: 0

XPASS: 0

ERROR: 0

==

make[3]: Leaving directory ’/home/gtheler/codigos/feenox’

make[2]: Leaving directory ’/home/gtheler/codigos/feenox’

make[1]: Leaving directory ’/home/gtheler/codigos/feenox’

$

To illustrate how regressions can be detected, let us add a bug deliberately and re-run
the test suite.

Edit the source file that contains the shape functions of the second-order tetrahedra
src/mesh/tet10.c, find the function feenox_mesh_tet10_h() and randomly change a
sign, i.e. replace

return t*(2*t-1);

with
return t*(2*t+1);

Save, recompile, and re-run the test suite to obtain some red:
$ git diff src/mesh/

diff --git a/src/mesh/tet10.c b/src/mesh/tet10.c

index 72bc838..293c290 100644

--- a/src/mesh/tet10.c

+++ b/src/mesh/tet10.c

@@ -227,7 +227,7 @@ double feenox_mesh_tet10_h(int j, double *vec_r) {

return s*(2*s-1);

break;

case 3:

- return t*(2*t-1);

+ return t*(2*t+1);

break;

Chapter 3: Running feenox 20

case 4:

$ make

[...]

$ make check

Making check in src

make[1]: Entering directory ’/home/gtheler/codigos/feenox/src’

make[1]: Nothing to be done for ’check’.

make[1]: Leaving directory ’/home/gtheler/codigos/feenox/src’

make[1]: Entering directory ’/home/gtheler/codigos/feenox’

cp -r src/feenox .

make check-TESTS

make[2]: Entering directory ’/home/gtheler/codigos/feenox’

make[3]: Entering directory ’/home/gtheler/codigos/feenox’

XFAIL: tests/abort.sh

PASS: tests/algebraic_expr.sh

FAIL: tests/beam-modal.sh

PASS: tests/beam-ortho.sh

PASS: tests/builtin.sh

PASS: tests/cylinder-traction-force.sh

PASS: tests/default_argument_value.sh

PASS: tests/expressions_constants.sh

PASS: tests/expressions_variables.sh

PASS: tests/expressions_functions.sh

PASS: tests/exp.sh

PASS: tests/i-beam-euler-bernoulli.sh

PASS: tests/iaea-pwr.sh

PASS: tests/iterative.sh

PASS: tests/fit.sh

PASS: tests/function_algebraic.sh

PASS: tests/function_data.sh

PASS: tests/function_file.sh

PASS: tests/function_vectors.sh

PASS: tests/integral.sh

PASS: tests/laplace2d.sh

PASS: tests/materials.sh

PASS: tests/mesh.sh

PASS: tests/moment-of-inertia.sh

PASS: tests/nafems-le1.sh

FAIL: tests/nafems-le10.sh

FAIL: tests/nafems-le11.sh

PASS: tests/nafems-t1-4.sh

PASS: tests/nafems-t2-3.sh

PASS: tests/neutron_diffusion_src.sh

PASS: tests/neutron_diffusion_keff.sh

FAIL: tests/parallelepiped.sh

PASS: tests/point-kinetics.sh

PASS: tests/print.sh

PASS: tests/thermal-1d.sh

PASS: tests/thermal-2d.sh

PASS: tests/trig.sh

PASS: tests/two-cubes-isotropic.sh

PASS: tests/two-cubes-orthotropic.sh

PASS: tests/vector.sh

XFAIL: tests/xfail-few-properties-ortho-young.sh

XFAIL: tests/xfail-few-properties-ortho-poisson.sh

XFAIL: tests/xfail-few-properties-ortho-shear.sh

==

Chapter 3: Running feenox 21

Testsuite summary for feenox v0.2.6-g3237ce9

==

TOTAL: 43

PASS: 35

SKIP: 0

XFAIL: 4

FAIL: 4

XPASS: 0

ERROR: 0

==

See ./test-suite.log

Please report to jeremy@seamplex.com

==

make[3]: *** [Makefile:1152: test-suite.log] Error 1

make[3]: Leaving directory ’/home/gtheler/codigos/feenox’

make[2]: *** [Makefile:1260: check-TESTS] Error 2

make[2]: Leaving directory ’/home/gtheler/codigos/feenox’

make[1]: *** [Makefile:1791: check-am] Error 2

make[1]: Leaving directory ’/home/gtheler/codigos/feenox’

make: *** [Makefile:1037: check-recursive] Error 1

$

3.2.2.7 Installation

To be able to execute FeenoX from any directory, the binary has to be copied to a directory
available in the PATH environment variable. If you have root access, the easiest and cleanest
way of doing this is by calling make install with sudo or su:
$ sudo make install

Making install in src

make[1]: Entering directory ’/home/gtheler/codigos/feenox/src’

gmake[2]: Entering directory ’/home/gtheler/codigos/feenox/src’

/usr/bin/mkdir -p ’/usr/local/bin’

/usr/bin/install -c feenox ’/usr/local/bin’

gmake[2]: Nothing to be done for ’install-data-am’.

gmake[2]: Leaving directory ’/home/gtheler/codigos/feenox/src’

make[1]: Leaving directory ’/home/gtheler/codigos/feenox/src’

make[1]: Entering directory ’/home/gtheler/codigos/feenox’

cp -r src/feenox .

make[2]: Entering directory ’/home/gtheler/codigos/feenox’

make[2]: Nothing to be done for ’install-exec-am’.

make[2]: Nothing to be done for ’install-data-am’.

make[2]: Leaving directory ’/home/gtheler/codigos/feenox’

make[1]: Leaving directory ’/home/gtheler/codigos/feenox’

$

If you do not have root access or do not want to populate /usr/local/bin, you can
either

• Configure with a different prefix (not covered here), or

• Copy (or symlink) the feenox executable to $HOME/bin:
mkdir -p ${HOME}/bin

cp feenox ${HOME}/bin

If you plan to regularly update FeenoX (which you should), you might want to symlink
instead of copy so you do not need to update the binary in $HOME/bin each time you
recompile:
mkdir -p ${HOME}/bin

ln -sf feenox ${HOME}/bin

Chapter 3: Running feenox 22

Check that FeenoX is now available from any directory (note the command is feenox

and not ./feenox):

$ cd

$ feenox -v

FeenoX v0.2.14-gbbf48c9

a free no-fee no-X uniX-like finite-element(ish) computational engineering tool

Copyright c© 2009--2022 Seamplex, https://seamplex.com/feenox

GNU General Public License v3+, https://www.gnu.org/licenses/gpl.html.

FeenoX is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law.

$

If it is not and you went through the $HOME/bin path, make sure it is in the PATH (pun).
Add

export PATH=${PATH}:${HOME}/bin

to your .bashrc in your home directory and re-login.

3.2.3 Advanced settings

3.2.3.1 Compiling with debug symbols

By default the C flags are -O3, without debugging. To add the -g flag, just use CFLAGS

when configuring:

./configure CFLAGS="-g -O0"

3.2.3.2 Using a different compiler

Without PETSc, FeenoX uses the CC environment variable to set the compiler. So configure
like

./configure CC=clang

When PETSc is detected FeenoX uses the mpicc executable, which is a wrapper to an
actual C compiler with extra flags needed to find the headers and the MPI library. To
change the wrapped compiler, you should set MPICH_CC or OMPI_CC, depending if you are
using MPICH or OpenMPI. For example, to force MPICH to use clang do

./configure MPICH_CC=clang CC=clang

To know which is the default MPI implementation, just run ./configure without argu-
ments and pay attention to the “Compiler” line in the “Summary of dependencies” section.
For example, for OpenMPI a typical summary would be

Summary of dependencies

GNU Scientific Library from system

SUNDIALS yes

PETSc yes /usr/lib/petsc

SLEPc yes /usr/lib/slepc

Compiler gcc -I/usr/lib/x86_64-linux-gnu/openmpi/include/openmpi -I/usr/lib/x86_64-linux-gnu/openmpi/include -pthread -L/usr/lib/x86_64-linux-gnu/openmpi/lib -lmpi

For MPICH:

Summary of dependencies

GNU Scientific Library from system

Chapter 3: Running feenox 23

SUNDIALS yes

PETSc yes /home/gtheler/libs/petsc-3.15.0 arch-linux2-c-debug

SLEPc yes /home/gtheler/libs/slepc-3.15.1

Compiler gcc -Wl,-z,relro -I/usr/include/x86_64-linux-gnu/mpich -L/usr/lib/x86_64-linux-gnu -lmpich

Other non-free implementations like Intel MPI might work but were not tested. However,
it should be noted that the MPI implementation used to compile FeenoX has to match the
one used to compile PETSc. Therefore, if you compiled PETSc on your own, it is up to you
to ensure MPI compatibility. If you are using PETSc as provided by your distribution’s
repositories, you will have to find out which one was used (it is usually OpenMPI) and use
the same one when compiling FeenoX.

The FeenoX executable will show the configured compiler and flags when invoked with
the --versions option:
$ feenox --versions

FeenoX v0.2.14-gbbf48c9

a free no-fee no-X uniX-like finite-element(ish) computational engineering tool

Last commit date : Sat Feb 12 15:35:05 2022 -0300

Build date : Sat Feb 12 15:35:44 2022 -0300

Build architecture : linux-gnu x86_64

Compiler version : gcc (Debian 10.2.1-6) 10.2.1 20210110

Compiler expansion : gcc -Wl,-z,relro -I/usr/include/x86_64-linux-gnu/mpich -L/usr/lib/x86_64-linux-gnu -lmpich

Compiler flags : -O3

Builder : gtheler@tom

GSL version : 2.6

SUNDIALS version : 5.7.0

PETSc version : Petsc Release Version 3.16.3, Jan 05, 2022

PETSc arch : arch-linux-c-debug

PETSc options : --download-eigen --download-hdf5 --download-hypre --download-metis --download-mumps --download-parmetis --download-pragmatic --download-scalapack

SLEPc version : SLEPc Release Version 3.16.1, Nov 17, 2021

$

Note that the reported values are the ones used in configure and not in make. Thus,
the recommended way to set flags is in configure and not in make.

3.2.3.3 Compiling PETSc

Particular explanation for FeenoX is to be done. For now, follow the general explanation
from PETSc’s website (https://petsc.org/release/install/).
export PETSC_DIR=$PWD

export PETSC_ARCH=arch-linux-c-opt

./configure --with-debugging=0 --download-mumps --download-scalapack --with-cxx=0 --COPTFLAGS=-O3 --FOPTFLAGS=-O3

export PETSC_DIR=$PWD

./configure --with-debugging=0 --with-openmp=0 --with-x=0 --with-cxx=0 --COPTFLAGS=-O3 --FOPTFLAGS=-O3

make PETSC_DIR=/home/ubuntu/reflex-deps/petsc-3.17.2 PETSC_ARCH=arch-linux-c-opt all

https://petsc.org/release/install/
https://petsc.org/release/install/

24

4 Examples

See https://www.seamplex.com/feenox/examples

https://www.seamplex.com/feenox/examples

25

5 Tutorial

See https://www.seamplex.com/feenox/tutorials

https://www.seamplex.com/feenox/tutorials

26

6 Description

FeenoX solves a problem defined in an plain-text input file and writes user-defined outputs
to the standard output and/or files, either also plain-text or with a particular format for
further post-processing. The syntax of this input file is designed to be as self-describing as
possible, using English keywords that explains FeenoX what problem it has to solve in a
way is understandable by both humans and computers. Keywords can work either as

1. Definitions, for instance ”define function f(x) and read its data from file f.dat”), or
as

2. Instructions, such as “write the stress at point D into the standard output”.

A person can tell if a keyword is a definition or an instruction because the former are
nouns (FUNCTION) and the latter verbs (PRINT). The equal sign = is a special keyword that
is neither a verb nor a noun, and its meaning changes depending on what is on the left hand
side of the assignment.

a. If there is a function, then it is a definition: define an algebraic function to be equal to
the expression on the right-hand side, e.g.:

f(x,y) = exp(-x^2)*cos(pi*y)

b. If there is a variable, vector or matrix, it is an instruction: evaluate the expression on
the right-hand side and assign it to the varible or vector (or matrix) element indicated
in the left-hand side. Strictly speaking, if the variable has not already been defined
(and implicit declaration is allowed), then the variable is also defined as well, e.g:

VAR a

VECTOR b[3]

a = sqrt(2)

b[i] = a*i^2

There is no need to explicitly define the scalar variable a with VAR since the first
assigment also defines it implicitly (if this is allowed by the keyword IMPLICIT).

An input file can define its own variables as needed, such as my_var or flag. But there
are some reserved names that are special in the sense that they either

1. can be set to modify the behavior of FeenoX, such as max_dt or dae_tol

2. can be read to get the internal status or results back from FeenoX, such as nodes or
keff

3. can be either set or read, such as dt or done

The problem being solved can be static or transient, depending on whether the special
variable end_time is zero (default) or not. If it is zero and static_steps is equal to one
(default), the instructions in the input file are executed once and then FeenoX quits. For
example

VAR x

PRINT %.7f func_min(cos(x)+1,x,0,6)

If static_steps is larger than one, the special variable step_static is increased and
they are repeated the number of time indicated by static_steps:

static_steps = 10

f(n) = n^2 - n + 41

PRINT f(step_static^2-1)

Chapter 6: Description 27

If the special variable end_time is set to a non-zero value, after computing the static
part a transient problem is solved. There are three kinds of transient problems:

1. Plain “standalone” transients

2. Differential-Algebraic equations (DAE) transients

3. Partial Differential equations (PDE) transients

In the first case, after all the instruction in the input file were executed, the special
variable t is increased by the value of dt and then the instructions are executed all over
again, until t reaches end_time:
end_time = 2*pi

dt = 1/10

y = lag(heaviside(t-1), 1)

z = random_gauss(0, sqrt(2)/10)

PRINT t sin(t) cos(t) y z HEADER

In the second case, the keyword PHASE_SPACE sets up DAE system. Then, one initial
condition and one differential-algebraic equation has to be given for each element in the
phase space. The instructions before the DAE block executed, then the DAE timestep is
advanced and finally the instructions after DAE block are executed (there cannot be any
instruction between the first and the last DAE):
PHASE_SPACE x

end_time = 1

x_0 = 1

x_dot = -x

PRINT t x exp(-t) HEADER

The timestep is chosen by the SUNDIALS library in order to keep an estimate of the
residual error below dae_tol (default is 10−6), although min_dt and max_dt can be used
to control it. See the section of the [Differential-Algebraic Equations subsystem] for more
information.

In the third cae, the type of PDE being solved is given by the keyword PROBLEM. Some
types of PDEs do support transient problems (such as thermal) but some others do not
(such as modal). See the detailed explanation of each problem type for details. Now the
transient problem is handled by the TS framework of the PETSc library. In general transient
PDEs involve a mesh, material properties, inital conditions, transient boundary conditions,
etc. And they create a lot of data since results mean spatial and temporal distributions of
one or more scalar fields:
example of a 1D heat transient problem

from https://www.mcs.anl.gov/petsc/petsc-current/src/ts/tutorials/ex3.c.html

a non-dimensional slab 0 < x < 1 is kept at T(0) = T(1) = 0

there is an initial non-trivial T(x)

the steady-state is T(x) = 0

PROBLEM thermal 1d

READ_MESH slab60.msh

end_time = 1e-1

initial condition

T_0(x) := sin(6*pi*x) + 3*sin(2*pi*x)

analytical solution

T_a(x,t) := exp(-36*pi^2*t)*sin(6*pi*x) + 3*exp(-4*pi^2*t)*sin(2*pi*x)

Chapter 6: Description 28

unitary non-dimensional properties

k = 1

rho = 1

cp = 1

boundary conditions

BC left T=0

BC right T=0

SOLVE_PROBLEM

PRINT %e t dt T(0.1) T_a(0.1,t) T(0.7) T_a(0.7,t)

WRITE_MESH temp-slab.msh T

IF done

PRINT "\# open temp-anim-slab.geo in Gmsh to see the result!"

ENDIF

PETSc’s TS also honors the min_dt and max_dt variables, but the time step is controled
by the allowed relative error with the special variable ts_rtol. Again, see the section of
the [Partial Differential Equations subsystem] for more information.

6.1 Algebraic expressions

To be done.

• Everything is an expression.

6.2 Initial conditions

6.3 Expansions of command line arguments

29

7 FeenoX & the UNIX Philospohy

7.1 Rule of Modularity

Developers should build a program out of simple parts connected by well defined
interfaces, so problems are local, and parts of the program can be replaced
in future versions to support new features. This rule aims to save time on
debugging code that is complex, long, and unreadable.

• FeenoX uses third-party high-quality libraries

• GNU Scientific Library

• SUNDIALS

• PETSc

• SLEPc

7.2 Rule of Clarity

Developers should write programs as if the most important communication is
to the developer who will read and maintain the program, rather than the
computer. This rule aims to make code as readable and comprehensible as
possible for whoever works on the code in the future.

• Example two squares in thermal contact.

• LE10 & LE11: a one-to-one correspondence between the problem text and the FeenoX
input.

7.3 Rule of Composition

Developers should write programs that can communicate easily with other pro-
grams. This rule aims to allow developers to break down projects into small,
simple programs rather than overly complex monolithic programs.

• FeenoX uses meshes created by a separate mesher (i.e. Gmsh).

• FeenoX writes data that has to be plotted or post-processed by other tools (Gnuplot,
Gmsh, Paraview, etc.).

• ASCII output is 100% controlled by the user so it can be tailored to suit any other
programs’ input needs such as AWK filters to create LaTeX tables.

7.4 Rule of Separation

Developers should separate the mechanisms of the programs from the policies
of the programs; one method is to divide a program into a front-end interface
and a back-end engine with which that interface communicates. This rule aims
to prevent bug introduction by allowing policies to be changed with minimum
likelihood of destabilizing operational mechanisms.

• FeenoX does not include a GUI, but it is GUI-friendly.

Chapter 7: FeenoX & the UNIX Philospohy 30

7.5 Rule of Simplicity

Developers should design for simplicity by looking for ways to break up program
systems into small, straightforward cooperating pieces. This rule aims to dis-
courage developers’ affection for writing “intricate and beautiful complexities”
that are in reality bug prone programs.

• Simple problems need simple input.

• Similar problems need similar inputs.

• English-like self-evident input files matching as close as possible the problem text.

• If there is a single material there is no need to link volumes to properties.

7.6 Rule of Parsimony

Developers should avoid writing big programs. This rule aims to prevent over-
investment of development time in failed or suboptimal approaches caused by
the owners of the program’s reluctance to throw away visibly large pieces of
work. Smaller programs are not only easier to write, optimize, and maintain;
they are easier to delete when deprecated.

• Parametric and/or optimization runs have to be driven from an outer script (Bash,
Python, etc.)

7.7 Rule of Transparency

Developers should design for visibility and discoverability by writing in a way
that their thought process can lucidly be seen by future developers working on
the project and using input and output formats that make it easy to identify
valid input and correct output. This rule aims to reduce debugging time and
extend the lifespan of programs.

• Written in C99

• Makes use of structures and function pointers to give the same functionality as C++’s
virtual methods without needing to introduce other complexities that make the code
base harder to maintain and to debug.

7.8 Rule of Robustness

Developers should design robust programs by designing for transparency and
discoverability, because code that is easy to understand is easier to stress test
for unexpected conditions that may not be foreseeable in complex programs.
This rule aims to help developers build robust, reliable products.

7.9 Rule of Representation

Developers should choose to make data more complicated rather than the pro-
cedural logic of the program when faced with the choice, because it is easier
for humans to understand complex data compared with complex logic. This
rule aims to make programs more readable for any developer working on the
project, which allows the program to be maintained.

Chapter 7: FeenoX & the UNIX Philospohy 31

7.10 Rule of Least Surprise

Developers should design programs that build on top of the potential users’
expected knowledge; for example, ‘+’ in a calculator program should always
mean ‘addition’. This rule aims to encourage developers to build intuitive
products that are easy to use.

• If one needs a problem where the conductivity depends on x as k(x) = 1 + x then the
input is
k(x) = 1+x

• If a problem needs a temperature distribution given by an algebraic expression
T (x, y, z) =

√
x2 + y2 + z then do

T(x,y,z) = sqrt(x^2+y^2) + z

7.11 Rule of Silence

Developers should design programs so that they do not print unnecessary out-
put. This rule aims to allow other programs and developers to pick out the
information they need from a program’s output without having to parse ver-
bosity.

• No PRINT (or WRITE_MESH), no output.

7.12 Rule of Repair

Developers should design programs that fail in a manner that is easy to localize
and diagnose or in other words “fail noisily”. This rule aims to prevent incorrect
output from a program from becoming an input and corrupting the output of
other code undetected.

• Input errors are detected before the computation is started:
$ feenox thermal-error.fee

error: undefined thermal conductivity ’k’

$

• Run-time errors can be user controled, they can be fatal or ignored.

7.13 Rule of Economy

Developers should value developer time over machine time, because machine
cycles today are relatively inexpensive compared to prices in the 1970s. This
rule aims to reduce development costs of projects.

• Output is 100% user-defined so the desired results is directly obtained instead of need-
ing further digging into tons of undesired data.The approach of “compute and write
everything you can in one single run” made sense in 1970 where CPU time was more
expensive than human time, but not anymore.

• Example: LE10 & LE11.

7.14 Rule of Generation

Developers should avoid writing code by hand and instead write abstract high-
level programs that generate code. This rule aims to reduce human errors and
save time.

Chapter 7: FeenoX & the UNIX Philospohy 32

• Inputs are M4-like-macro friendly.

• Parametric runs can be done from scripts through command line arguments expansion.

• Documentation is created out of simple Markdown sources and assembled as needed.

7.15 Rule of Optimization

Developers should prototype software before polishing it. This rule aims to
prevent developers from spending too much time for marginal gains.

• Premature optimization is the root of all evil

• We are still building. We will optimize later.

• Code optimization: TODO

• Parallelization: TODO

• Comparison with other tools: TODO

7.16 Rule of Diversity

Developers should design their programs to be flexible and open. This rule aims
to make programs flexible, allowing them to be used in ways other than those
their developers intended.

• Either Gmsh or Paraview can be used to post-process results.

• Other formats can be added.

7.17 Rule of Extensibility

Developers should design for the future by making their protocols extensible,
allowing for easy plugins without modification to the program’s architecture by
other developers, noting the version of the program, and more. This rule aims
to extend the lifespan and enhance the utility of the code the developer writes.

• FeenoX is GPLv3+. The ‘+’ is for the future.

• Each PDE has a separate source directory. Any of them can be used as a template for
new PDEs, especially laplace for elliptic operators.

	1 Overview
	2 Introduction
	3 Running feenox
	Invocation
	Compilation
	Quickstart
	Detailed configuration and compilation
	Mandatory dependencies
	Optional dependencies
	FeenoX source code
	Configuration
	Source code compilation
	Test suite
	Installation

	Advanced settings
	Compiling with debug symbols
	Using a different compiler
	Compiling PETSc

	4 Examples
	5 Tutorial
	6 Description
	Algebraic expressions
	Initial conditions
	Expansions of command line arguments

	7 FeenoX & the UNIX Philospohy
	Rule of Modularity
	Rule of Clarity
	Rule of Composition
	Rule of Separation
	Rule of Simplicity
	Rule of Parsimony
	Rule of Transparency
	Rule of Robustness
	Rule of Representation
	Rule of Least Surprise
	Rule of Silence
	Rule of Repair
	Rule of Economy
	Rule of Generation
	Rule of Optimization
	Rule of Diversity
	Rule of Extensibility

