
Compilation instructions

Contents

1 Quickstart 2

2 Detailed configuration and compilation 3
2.1 Mandatory dependencies . 3

2.1.1 The GNU Scientific Library . 4
2.2 Optional dependencies . 4

2.2.1 SUNDIALS . 5
2.2.2 PETSc . 5
2.2.3 SLEPc . 6

2.3 FeenoX source code . 6
2.3.1 Git repository . 6
2.3.2 Source tarballs . 7

2.4 Configuration . 7
2.5 Source code compilation . 8
2.6 Test suite . 9
2.7 Installation . 15

3 Advanced settings 16
3.1 Compiling with debug symbols . 16
3.2 Using a different compiler . 16
3.3 Compiling PETSc . 17

Compilation instructions

These detailed compilation instructions are aimed at amd64 Debian-based GNU/Linux distributions. The compi-
lation procedure follows the POSIX standard, so it should work in other operating systems and architectures
as well. Distributions not using apt for packages (i.e. yum) should change the package installation commands
(and possibly the package names). The instructions should also work for in MacOS, although the apt-get ←↩

commands should be replaced by brew or similar. Same for Windows under Cygwin, the packages should be
installed through the Cygwin installer. WSL was not tested, but should work as well.

1 Quickstart

Note that the quickest way to get started is to download an already-compiled statically-linked binary exe-
cutable. Note that getting a binary is the quickest and easiest way to go but it is the less flexible one. Mind the
following instructions if a binary-only option is not suitable for your workflow and/or you do need to compile
the source code from scratch.

On a GNU/Linux box (preferably Debian-based), follow these quick steps. See sec. 2 for the actual detailed
explanations.

To compile the Git repository, proceed as follows. This procedure does need git and autoconf but new versions
can be pulled and recompiled easily. If something goes wrong and you get an error, do not hesitate to ask in
FeenoX’ discussion page.

1. Install mandatory dependencies

sudo apt-get install gcc make git automake autoconf libgsl-dev

If you cannot install libgsl-dev but still have git and the build toolchain, you can have the configure script
to download and compile it for you. See point 4 below.

2. Install optional dependencies (of course these are optional but recommended)

sudo apt-get install libsundials-dev petsc-dev slepc-dev

3. Clone Github repository

git clone https://github.com/seamplex/feenox

4. Boostrap, configure, compile & make

cd feenox
./autogen.sh
./configure
make -j4

If you cannot (or do not want) to use libgsl-dev from a package repository, call configurewith --enable ←↩

-download-gsl:

./configure --enable-download-gsl

/ / 2/18

https://en.wikipedia.org/wiki/POSIX
https://www.cygwin.com/
https://www.seamplex.com/feenox/#download
https://github.com/seamplex/feenox/discussions

Compilation instructions

If you do not have Internet access, get the tarball manually, copy it to the same directory as configure

and run again. See the detailed compilation instructions for an explanation.

5. Run test suite (optional)

make check

6. Install the binary system wide (optional)

sudo make install

To stay up to date, pull and then autogen, configure and make (and optionally install):

git pull
./autogen.sh; ./configure; make -j4
sudo make install

2 Detailed configuration and compilation

Themain target and development environment is DebianGNU/Linux, although it should be possible to compile
FeenoX in any free GNU/Linux variant (and even the in non-free MacOS and/or Windows platforms) running
in virtually any hardware platform. FeenoX can run be run either in HPC cloud servers or a Raspberry Pi, and
almost everything that sits in the middle.

Following the UNIX philosophy discussed in the SDS, FeenoX re-uses a lot of already-existing high-quality free
and open source libraries that implement a wide variety of mathematical operations. This leads to a number
of dependencies that FeenoX needs in order to implement certain features.

There is only one dependency that is mandatory, namely GNU GSL (see sec. 2.1.1), which if it not found then
FeenoX cannot be compiled. All other dependencies are optional, meaning that FeenoX can be compiled but
its capabilities will be partially reduced.

As per the SRS, all dependencies have to be available on mainstream GNU/Linux distributions and have to be
free and open source software. But they can also be compiled from source in case the package repositories are
not available or customized compilation flags are needed (i.e. optimization or debugging settings).

In particular, PETSc (and SLEPc) also depend on other mathematical libraries to perform particular operations
such as low-level linear algebra operations. These extra dependencies can be either free (such as LAPACK) or
non-free (such as Intel’s MKL), but there is always at least one combination of a working setup that involves
only free and open source software which is compatible with FeenoX licensing terms (GPLv3+). See the
documentation of each package for licensing details.

2.1 Mandatory dependencies

FeenoX has one mandatory dependency for run-time execution and the standard build toolchain for compila-
tion. It is written in C99 so only a C compiler is needed, although make is also required. Free and open source

/ / 3/18

compilation.md
https://www.debian.org/
SDS.md
https://www.gnu.org/software/gsl/
SRS.md
https://petsc.org/release/
https://slepc.upv.es/
http://www.netlib.org/lapack/
https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl.html

Compilation instructions

compilers are favored. The usual C compiler is gcc but clang can also be used. Nevertheless, the non-free icc

has also been tested.

Note that there is no need to have a Fortran nor a C++ compiler to build FeenoX.Theymight be needed to build
other dependencies (such as PETSc and its dependencies), but not to compile FeenoX if all the dependencies are
installed from the oeprating system’s package repositories. In case the build toolchain is not already installed,
do so with

sudo apt-get install gcc make

If the source is to be fetched from the Git repository then not only is git needed but also autoconf and automake

since the configure script is not stored in the Git repository but the autogen.sh script that bootstraps the tree
and creates it. So if instead of compiling a source tarball one wants to clone from GitHub, these packages are
also mandatory:

sudo apt-get install git automake autoconf

Again, chances are that any existing GNU/Linux box has all these tools already installed.

2.1.1 The GNU Scientific Library

The only run-time dependency is GNU GSL (not to be confused with Microsoft GSL). It can be installed with

sudo apt-get install libgsl-dev

In case this package is not available or you do not have enough permissions to install system-wide packages,
there are two options.

1. Pass the option --enable-download-gsl to the configure script below.
2. Manually download, compile and install GNU GSL

If the configure script cannot find both the headers and the actual library, it will refuse to proceed. Note that
the FeenoX binaries already contain a static version of the GSL so it is not needed to have it installed in order
to run the statically-linked binaries.

2.2 Optional dependencies

FeenoX has three optional run-time dependencies. It can be compiled without any of these, but functionality
will be reduced:

• SUNDIALS provides support for solving systems of ordinary differential equations (ODEs) or differential-
algebraic equations (DAEs). This dependency is needed when running inputs with the PHASE_SPACE ←↩

keyword.

• PETSc provides support for solving partial differential equations (PDEs). This dependency is needed
when running inputs with the PROBLEM keyword.

/ / 4/18

https://github.com/seamplex/feenox/
https://www.gnu.org/software/gsl/
https://github.com/microsoft/GSL
https://www.gnu.org/software/gsl/
https://computing.llnl.gov/projects/sundials
https://petsc.org/

Compilation instructions

• SLEPc provides support for solving eigen-value problems in partial differential equations (PDEs). This
dependency is needed for inputs with PROBLEM types with eigen-value formulations such as modal and
neutron_transport.

In absence of all these, FeenoX can still be used to

• solve general mathematical problems such as the ones to compute the Fibonacci sequence or the Logistic
map,

• operate on functions, either algebraically or point-wise interpolated such as Computing the derivative
of a function as a UNIX filter

• read, operate over and write meshes,
• etc.

These optional dependencies have to be installed separately. There is no option to have configure to download
them as with --enable-download-gsl. When running the test suite (sec. 2.6), those tests that need an optional
dependency which was not found at compile time will be skipped.

2.2.1 SUNDIALS

SUNDIALS is a SUite of Nonlinear and DIfferential/ALgebraic equation Solvers. It is used by FeenoX to solve
dynamical systems casted as DAEs with the keyword PHASE_SPACE, like the Lorenz system.

Install either by doing

sudo apt-get install libsundials-dev

or by following the instructions in the documentation.

2.2.2 PETSc

The Portable, Extensible Toolkit for Scientific Computation, pronounced PET-see (/ˈpɛt-siː/), is a suite of data
structures and routines for the scalable (parallel) solution of scientific applications modeled by partial differen-
tial equations. It is used by FeenoX to solve PDEs with the keyword PROBLEM, like the NAFEMS LE10 benchmark
problem.

Install either by doing

sudo apt-get install petsc-dev

or by following the instructions in the documentation.

Note that

• Configuring and compiling PETSc from scratch might be difficult the first time. It has a lot of dependen-
cies and options. Read the official documentation for a detailed explanation.

• There is a huge difference in efficiency between using PETSc compiled with debugging symbols and
with optimization flags. Make sure to configure --with-debugging=0 for FeenoX production runs and leave
the debugging symbols (which is the default) for development and debugging only.

/ / 5/18

https://slepc.upv.es/
https://www.seamplex.com/feenox/examples/#the-fibonacci-sequence
https://www.seamplex.com/feenox/examples/#the-logistic-map
https://www.seamplex.com/feenox/examples/#the-logistic-map
https://www.seamplex.com/feenox/examples/#computing-the-derivative-of-a-function-as-a-unix-filter
https://www.seamplex.com/feenox/examples/#computing-the-derivative-of-a-function-as-a-unix-filter
https://computing.llnl.gov/projects/sundials
https://www.seamplex.com/feenox/doc/feenox-manual.html#phase_space
https://www.seamplex.com/feenox/examples/#lorenz-attractor-the-one-with-the-butterfly
(https://petsc.org/)
https://www.seamplex.com/feenox/doc/feenox-manual.html#problem
https://www.seamplex.com/feenox/examples/#nafems-le10-thick-plate-pressure-benchmark
https://www.seamplex.com/feenox/examples/#nafems-le10-thick-plate-pressure-benchmark
https://petsc.org/release/install/

Compilation instructions

• FeenoX needs PETSc to be configured with real double-precision scalars. It will compile but will com-
plain at run-time when using complex and/or single or quad-precision scalars.

• FeenoX honors the PETSC_DIR and PETSC_ARCH environment variables when executing configure. If these two
do not exist or are empty, it will try to use the default system-wide locations (i.e. the petsc-dev package).

2.2.3 SLEPc

The Scalable Library for Eigenvalue Problem Computations, is a software library for the solution of large scale
sparse eigenvalue problems on parallel computers. It is used by FeenoX to solve PDEs with the keyword
PROBLEM that need eigen-value computations, such as modal analysis of a cantilevered beam.

Install either by doing

sudo apt-get install slepc-dev

or by following the instructions in the documentation.

Note that

• SLEPc is an extension of PETSc so the latter has to be already installed and configured.
• FeenoX honors the SLEPC_DIR environment variable when executing configure. If it does not exist or is
empty it will try to use the default system-wide locations (i.e. the slepc-dev package).

• If PETSc was configured with --download-slepc then the SLEPC_DIR variable has to be set to the directory
inside PETSC_DIR where SLEPc was cloned and compiled.

2.3 FeenoX source code

There are two ways of getting FeenoX’ source code:

1. Cloning the GitHub repository at https://github.com/seamplex/feenox
2. Downloading a source tarball from https://seamplex.com/feenox/dist/src/

2.3.1 Git repository

The main Git repository is hosted on GitHub at https://github.com/seamplex/feenox. It is public so it can be
cloned either through HTTPS or SSH without needing any particular credentials. It can also be forked freely.
See the Programming Guide for details about pull requests and/or write access to the main repository.

Ideally, the main branch should have a usable snapshot. All other branches can contain code that might not
compile or might not run or might not be tested. If you find a commit in the main branch that does not pass
the tests, please report it in the issue tracker ASAP.

After cloning the repository

git clone https://github.com/seamplex/feenox

the autogen.sh script has to be called to bootstrap the working tree, since the configure script is not stored in
the repository but created from configure.ac (which is in the repository) by autogen.sh.

/ / 6/18

https://slepc.upv.es/
https://www.seamplex.com/feenox/doc/feenox-manual.html#problem
https://www.seamplex.com/feenox/examples/#five-natural-modes-of-a-cantilevered-wire
https://github.com/seamplex/feenox
https://seamplex.com/feenox/dist/src/
https://github.com/seamplex/feenox
programming.md

Compilation instructions

Similarly, after updating the working tree with

git pull

it is recommended to re-run the autogen.sh script. It will do a make clean and re-compute the version string.

2.3.2 Source tarballs

When downloading a source tarball, there is no need to run autogen.sh since the configure script is already
included in the tarball. This method cannot update the working tree. For each new FeenoX release, the whole
source tarball has to be downloaded again.

2.4 Configuration

To create a proper Makefile for the particular architecture, dependencies and compilation options, the script
configure has to be executed. This procedure follows the GNU Coding Standards.

./configure

Without any particular options, configurewill check if the mandatory GNU Scientific Library is available (both
its headers and run-time library). If it is not, then the option --enable-download-gsl can be used. This option will
try to use wget (which should be installed) to download a source tarball, uncompress, configure and compile
it. If these steps are successful, this GSL will be statically linked into the resulting FeenoX executable. If there
is no internet connection, the configure script will say that the download failed. In that case, get the indicated
tarball file manually, copy it into the current directory and re-run ./configure.

The script will also check for the availability of optional dependencies. At the end of the execution, a summary
of what was found (or not) is printed in the standard output:

$./configure
[...]

Summary of dependencies

GNU Scientific Library from system
SUNDIALS IDA yes
PETSc yes /usr/lib/petsc
SLEPc no

[...]

If for some reason one of the optional dependencies is available but FeenoX should not use it, then pass -- ←↩

without-sundials, --without-petsc and/or --without-slepc as arguments. For example

$./configure --without-sundials --without-petsc
[...]

Summary of dependencies

GNU Scientific Library from system

/ / 7/18

https://www.gnu.org/prep/standards/
https://www.gnu.org/software/gsl/

Compilation instructions

SUNDIALS no
PETSc no
SLEPc no

[...]

If configure complains about contradicting values from the cached ones, run autogen.sh again before configure

and/or clone/uncompress the source tarball in a fresh location.

To see all the available options run

./configure --help

2.5 Source code compilation

After the successful execution of configure, a Makefile is created. To compile FeenoX, just execute

make

Compilation should take a dozen of seconds. It can be even sped up by using the -j option

make -j8

The binary executable will be located in the src directory but a copy will be made in the base directory as well.
Test it by running without any arguments

$./feenox
FeenoX v0.2.14-gbbf48c9
a free no-fee no-X uniX-like finite-element(ish) computational engineering tool

usage: feenox [options] inputfile [replacement arguments] [petsc options]

-h, --help display options and detailed explanations of commmand-line usage
-v, --version display brief version information and exit
-V, --versions display detailed version information

Run with --help for further explanations.
$

The -v (or --version) option shows the version and a copyright notice:

$./feenox -v
FeenoX v0.2.14-gbbf48c9
a free no-fee no-X uniX-like finite-element(ish) computational engineering tool

Copyright © 2009--2022 Seamplex, https://seamplex.com/feenox
GNU General Public License v3+, https://www.gnu.org/licenses/gpl.html.
FeenoX is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.
$

/ / 8/18

Compilation instructions

The -V (or --versions) option shows the dates of the last commits, the compiler options and the versions of the
linked libraries:

$./feenox -V
FeenoX v0.1.24-g6cfe063
a free no-fee no-X uniX-like finite-element(ish) computational engineering tool

Last commit date : Sun Aug 29 11:34:04 2021 -0300
Build date : Sun Aug 29 11:44:50 2021 -0300
Build architecture : linux-gnu x86_64
Compiler version : gcc (Debian 10.2.1-6) 10.2.1 20210110
Compiler expansion : gcc -Wl,-z,relro -I/usr/include/x86_64-linux-gnu/mpich -L/usr/lib/x86_64-linux-gnu - ←↩

lmpich
Compiler flags : -O3
Builder : gtheler@chalmers
GSL version : 2.6
SUNDIALS version : 4.1.0
PETSc version : Petsc Release Version 3.14.5, Mar 03, 2021
PETSc arch :
PETSc options : --build=x86_64-linux-gnu --prefix=/usr --includedir=${prefix}/include --mandir=${prefix ←↩

}/share/man --infodir=${prefix}/share/info --sysconfdir=/etc --localstatedir=/var --with-option- ←↩
checking=0 --with-silent-rules=0 --libdir=${prefix}/lib/x86_64-linux-gnu --runstatedir=/run --with- ←↩
maintainer-mode=0 --with-dependency-tracking=0 --with-debugging=0 --shared-library-extension=_real -- ←↩
with-shared-libraries --with-pic=1 --with-cc=mpicc --with-cxx=mpicxx --with-fc=mpif90 --with-cxx- ←↩
dialect=C++11 --with-opencl=1 --with-blas-lib=-lblas --with-lapack-lib=-llapack --with-scalapack=1 -- ←↩
with-scalapack-lib=-lscalapack-openmpi --with-ptscotch=1 --with-ptscotch-include=/usr/include/scotch -- ←↩
with-ptscotch-lib="-lptesmumps -lptscotch -lptscotcherr" --with-fftw=1 --with-fftw-include="[]" --with- ←↩
fftw-lib="-lfftw3 -lfftw3_mpi" --with-superlu_dist=1 --with-superlu_dist-include=/usr/include/superlu- ←↩
dist --with-superlu_dist-lib=-lsuperlu_dist --with-hdf5-include=/usr/include/hdf5/openmpi --with-hdf5- ←↩
lib="-L/usr/lib/x86_64-linux-gnu/hdf5/openmpi -L/usr/lib/x86_64-linux-gnu/openmpi/lib -lhdf5 -lmpi" -- ←↩
CXX_LINKER_FLAGS=-Wl,--no-as-needed --with-hypre=1 --with-hypre-include=/usr/include/hypre --with-hypre ←↩
-lib=-lHYPRE_core --with-mumps=1 --with-mumps-include="[]" --with-mumps-lib="-ldmumps -lzmumps -lsmumps ←↩
-lcmumps -lmumps_common -lpord" --with-suitesparse=1 --with-suitesparse-include=/usr/include/ ←↩
suitesparse --with-suitesparse-lib="-lumfpack -lamd -lcholmod -lklu" --with-superlu=1 --with-superlu- ←↩
include=/usr/include/superlu --with-superlu-lib=-lsuperlu --prefix=/usr/lib/petscdir/petsc3.14/x86_64- ←↩
linux-gnu-real --PETSC_ARCH=x86_64-linux-gnu-real CFLAGS="-g -O2 -ffile-prefix-map=/build/petsc-pVufYp/ ←↩
petsc-3.14.5+dfsg1=. -flto=auto -ffat-lto-objects -fstack-protector-strong -Wformat -Werror=format- ←↩
security -fPIC" CXXFLAGS="-g -O2 -ffile-prefix-map=/build/petsc-pVufYp/petsc-3.14.5+dfsg1=. -flto=auto ←↩
-ffat-lto-objects -fstack-protector-strong -Wformat -Werror=format-security -fPIC" FCFLAGS="-g -O2 - ←↩
ffile-prefix-map=/build/petsc-pVufYp/petsc-3.14.5+dfsg1=. -flto=auto -ffat-lto-objects -fstack- ←↩
protector-strong -fPIC -ffree-line-length-0" FFLAGS="-g -O2 -ffile-prefix-map=/build/petsc-pVufYp/petsc ←↩
-3.14.5+dfsg1=. -flto=auto -ffat-lto-objects -fstack-protector-strong -fPIC -ffree-line-length-0" ←↩
CPPFLAGS="-Wdate-time -D_FORTIFY_SOURCE=2" LDFLAGS="-Wl,-Bsymbolic-functions -flto=auto -Wl,-z,relro - ←↩
fPIC" MAKEFLAGS=w

SLEPc version : SLEPc Release Version 3.14.2, Feb 01, 2021
$

2.6 Test suite

The test directory contains a set of test cases whose output is known so that unintended regressions can be
detected quickly (see the programming guide for more information). The test suite ought to be run after each
modification in FeenoX’ source code. It consists of a set of scripts and input files needed to solve dozens of

/ / 9/18

https://github.com/seamplex/feenox/tree/main/tests
programming.md

Compilation instructions

cases. The output of each execution is compared to a reference solution. In case the output does not match
the reference, the test suite fails.

After compiling FeenoX as explained in sec. 2.5, the test suite can be run with make check. Ideally everything
should be green meaning the tests passed:

$ make check
Making check in src
make[1]: Entering directory '/home/gtheler/codigos/feenox/src'
make[1]: Nothing to be done for 'check'.
make[1]: Leaving directory '/home/gtheler/codigos/feenox/src'
make[1]: Entering directory '/home/gtheler/codigos/feenox'
cp -r src/feenox .
make check-TESTS
make[2]: Entering directory '/home/gtheler/codigos/feenox'
make[3]: Entering directory '/home/gtheler/codigos/feenox'
XFAIL: tests/abort.sh
PASS: tests/algebraic_expr.sh
PASS: tests/beam-modal.sh
PASS: tests/beam-ortho.sh
PASS: tests/builtin.sh
PASS: tests/cylinder-traction-force.sh
PASS: tests/default_argument_value.sh
PASS: tests/expressions_constants.sh
PASS: tests/expressions_variables.sh
PASS: tests/expressions_functions.sh
PASS: tests/exp.sh
PASS: tests/i-beam-euler-bernoulli.sh
PASS: tests/iaea-pwr.sh
PASS: tests/iterative.sh
PASS: tests/fit.sh
PASS: tests/function_algebraic.sh
PASS: tests/function_data.sh
PASS: tests/function_file.sh
PASS: tests/function_vectors.sh
PASS: tests/integral.sh
PASS: tests/laplace2d.sh
PASS: tests/materials.sh
PASS: tests/mesh.sh
PASS: tests/moment-of-inertia.sh
PASS: tests/nafems-le1.sh
PASS: tests/nafems-le10.sh
PASS: tests/nafems-le11.sh
PASS: tests/nafems-t1-4.sh
PASS: tests/nafems-t2-3.sh
PASS: tests/neutron_diffusion_src.sh
PASS: tests/neutron_diffusion_keff.sh
PASS: tests/parallelepiped.sh
PASS: tests/point-kinetics.sh
PASS: tests/print.sh
PASS: tests/thermal-1d.sh
PASS: tests/thermal-2d.sh
PASS: tests/trig.sh
PASS: tests/two-cubes-isotropic.sh

/ / 10/18

Compilation instructions

PASS: tests/two-cubes-orthotropic.sh
PASS: tests/vector.sh
XFAIL: tests/xfail-few-properties-ortho-young.sh
XFAIL: tests/xfail-few-properties-ortho-poisson.sh
XFAIL: tests/xfail-few-properties-ortho-shear.sh
==
Testsuite summary for feenox v0.2.6-g3237ce9
==
TOTAL: 43
PASS: 39
SKIP: 0
XFAIL: 4
FAIL: 0
XPASS: 0
ERROR: 0
==
make[3]: Leaving directory '/home/gtheler/codigos/feenox'
make[2]: Leaving directory '/home/gtheler/codigos/feenox'
make[1]: Leaving directory '/home/gtheler/codigos/feenox'
$

The XFAIL result means that those cases are expected to fail (they are there to test if FeenoX can handle errors).
Failure would mean they passed. In case FeenoX was not compiled with any optional dependency, the corre-
sponding tests will be skipped. Skipped tests do not mean any failure, but that the compiled FeenoX executable
does not have the full capabilities. For example, when configuring with ./configure --without-petsc (but with
SUNDIALS), the test suite output should be a mixture of green and blue:

$./configure --without-petsc
[...]
configure: creating ./src/version.h

Summary of dependencies

GNU Scientific Library from system
SUNDIALS yes
PETSc no
SLEPc no
Compiler gcc

checking that generated files are newer than configure... done
configure: creating ./config.status
config.status: creating Makefile
config.status: creating src/Makefile
config.status: creating doc/Makefile
config.status: executing depfiles commands
$ make
[...]
$ make check
Making check in src
make[1]: Entering directory '/home/gtheler/codigos/feenox/src'
make[1]: Nothing to be done for 'check'.
make[1]: Leaving directory '/home/gtheler/codigos/feenox/src'
make[1]: Entering directory '/home/gtheler/codigos/feenox'

/ / 11/18

Compilation instructions

cp -r src/feenox .
make check-TESTS
make[2]: Entering directory '/home/gtheler/codigos/feenox'
make[3]: Entering directory '/home/gtheler/codigos/feenox'
XFAIL: tests/abort.sh
PASS: tests/algebraic_expr.sh
SKIP: tests/beam-modal.sh
SKIP: tests/beam-ortho.sh
PASS: tests/builtin.sh
SKIP: tests/cylinder-traction-force.sh
PASS: tests/default_argument_value.sh
PASS: tests/expressions_constants.sh
PASS: tests/expressions_variables.sh
PASS: tests/expressions_functions.sh
PASS: tests/exp.sh
SKIP: tests/i-beam-euler-bernoulli.sh
SKIP: tests/iaea-pwr.sh
PASS: tests/iterative.sh
PASS: tests/fit.sh
PASS: tests/function_algebraic.sh
PASS: tests/function_data.sh
PASS: tests/function_file.sh
PASS: tests/function_vectors.sh
PASS: tests/integral.sh
SKIP: tests/laplace2d.sh
PASS: tests/materials.sh
PASS: tests/mesh.sh
PASS: tests/moment-of-inertia.sh
SKIP: tests/nafems-le1.sh
SKIP: tests/nafems-le10.sh
SKIP: tests/nafems-le11.sh
SKIP: tests/nafems-t1-4.sh
SKIP: tests/nafems-t2-3.sh
SKIP: tests/neutron_diffusion_src.sh
SKIP: tests/neutron_diffusion_keff.sh
SKIP: tests/parallelepiped.sh
PASS: tests/point-kinetics.sh
PASS: tests/print.sh
SKIP: tests/thermal-1d.sh
SKIP: tests/thermal-2d.sh
PASS: tests/trig.sh
SKIP: tests/two-cubes-isotropic.sh
SKIP: tests/two-cubes-orthotropic.sh
PASS: tests/vector.sh
SKIP: tests/xfail-few-properties-ortho-young.sh
SKIP: tests/xfail-few-properties-ortho-poisson.sh
SKIP: tests/xfail-few-properties-ortho-shear.sh
==
Testsuite summary for feenox v0.2.6-g3237ce9
==
TOTAL: 43
PASS: 21
SKIP: 21
XFAIL: 1

/ / 12/18

Compilation instructions

FAIL: 0
XPASS: 0
ERROR: 0
==
make[3]: Leaving directory '/home/gtheler/codigos/feenox'
make[2]: Leaving directory '/home/gtheler/codigos/feenox'
make[1]: Leaving directory '/home/gtheler/codigos/feenox'
$

To illustrate how regressions can be detected, let us add a bug deliberately and re-run the test suite.

Edit the source file that contains the shape functions of the second-order tetrahedra src/mesh/tet10.c, find the
function feenox_mesh_tet10_h() and randomly change a sign, i.e. replace

return t*(2*t-1);

with
return t*(2*t+1);

Save, recompile, and re-run the test suite to obtain some red:

$ git diff src/mesh/
diff --git a/src/mesh/tet10.c b/src/mesh/tet10.c
index 72bc838..293c290 100644
--- a/src/mesh/tet10.c
+++ b/src/mesh/tet10.c
@@ -227,7 +227,7 @@ double feenox_mesh_tet10_h(int j, double *vec_r) {

return s*(2*s-1);
break;

case 3:
- return t*(2*t-1);
+ return t*(2*t+1);

break;

case 4:
$ make
[...]
$ make check
Making check in src
make[1]: Entering directory '/home/gtheler/codigos/feenox/src'
make[1]: Nothing to be done for 'check'.
make[1]: Leaving directory '/home/gtheler/codigos/feenox/src'
make[1]: Entering directory '/home/gtheler/codigos/feenox'
cp -r src/feenox .
make check-TESTS
make[2]: Entering directory '/home/gtheler/codigos/feenox'
make[3]: Entering directory '/home/gtheler/codigos/feenox'
XFAIL: tests/abort.sh
PASS: tests/algebraic_expr.sh
FAIL: tests/beam-modal.sh
PASS: tests/beam-ortho.sh
PASS: tests/builtin.sh

/ / 13/18

Compilation instructions

PASS: tests/cylinder-traction-force.sh
PASS: tests/default_argument_value.sh
PASS: tests/expressions_constants.sh
PASS: tests/expressions_variables.sh
PASS: tests/expressions_functions.sh
PASS: tests/exp.sh
PASS: tests/i-beam-euler-bernoulli.sh
PASS: tests/iaea-pwr.sh
PASS: tests/iterative.sh
PASS: tests/fit.sh
PASS: tests/function_algebraic.sh
PASS: tests/function_data.sh
PASS: tests/function_file.sh
PASS: tests/function_vectors.sh
PASS: tests/integral.sh
PASS: tests/laplace2d.sh
PASS: tests/materials.sh
PASS: tests/mesh.sh
PASS: tests/moment-of-inertia.sh
PASS: tests/nafems-le1.sh
FAIL: tests/nafems-le10.sh
FAIL: tests/nafems-le11.sh
PASS: tests/nafems-t1-4.sh
PASS: tests/nafems-t2-3.sh
PASS: tests/neutron_diffusion_src.sh
PASS: tests/neutron_diffusion_keff.sh
FAIL: tests/parallelepiped.sh
PASS: tests/point-kinetics.sh
PASS: tests/print.sh
PASS: tests/thermal-1d.sh
PASS: tests/thermal-2d.sh
PASS: tests/trig.sh
PASS: tests/two-cubes-isotropic.sh
PASS: tests/two-cubes-orthotropic.sh
PASS: tests/vector.sh
XFAIL: tests/xfail-few-properties-ortho-young.sh
XFAIL: tests/xfail-few-properties-ortho-poisson.sh
XFAIL: tests/xfail-few-properties-ortho-shear.sh
==
Testsuite summary for feenox v0.2.6-g3237ce9
==
TOTAL: 43
PASS: 35
SKIP: 0
XFAIL: 4
FAIL: 4
XPASS: 0
ERROR: 0
==
See ./test-suite.log
Please report to jeremy@seamplex.com
==
make[3]: *** [Makefile:1152: test-suite.log] Error 1
make[3]: Leaving directory '/home/gtheler/codigos/feenox'

/ / 14/18

Compilation instructions

make[2]: *** [Makefile:1260: check-TESTS] Error 2
make[2]: Leaving directory '/home/gtheler/codigos/feenox'
make[1]: *** [Makefile:1791: check-am] Error 2
make[1]: Leaving directory '/home/gtheler/codigos/feenox'
make: *** [Makefile:1037: check-recursive] Error 1
$

2.7 Installation

To be able to execute FeenoX from any directory, the binary has to be copied to a directory available in the
PATH environment variable. If you have root access, the easiest and cleanest way of doing this is by calling
make install with sudo or su:

$ sudo make install
Making install in src
make[1]: Entering directory '/home/gtheler/codigos/feenox/src'
gmake[2]: Entering directory '/home/gtheler/codigos/feenox/src'
/usr/bin/mkdir -p '/usr/local/bin'
/usr/bin/install -c feenox '/usr/local/bin'

gmake[2]: Nothing to be done for 'install-data-am'.
gmake[2]: Leaving directory '/home/gtheler/codigos/feenox/src'
make[1]: Leaving directory '/home/gtheler/codigos/feenox/src'
make[1]: Entering directory '/home/gtheler/codigos/feenox'
cp -r src/feenox .
make[2]: Entering directory '/home/gtheler/codigos/feenox'
make[2]: Nothing to be done for 'install-exec-am'.
make[2]: Nothing to be done for 'install-data-am'.
make[2]: Leaving directory '/home/gtheler/codigos/feenox'
make[1]: Leaving directory '/home/gtheler/codigos/feenox'
$

If you do not have root access or do not want to populate /usr/local/bin, you can either

• Configure with a different prefix (not covered here), or

• Copy (or symlink) the feenox executable to $HOME/bin:

mkdir -p ${HOME}/bin
cp feenox ${HOME}/bin

If you plan to regularly update FeenoX (which you should), you might want to symlink instead of copy
so you do not need to update the binary in $HOME/bin each time you recompile:

mkdir -p ${HOME}/bin
ln -sf feenox ${HOME}/bin

Check that FeenoX is now available from any directory (note the command is feenox and not ./feenox):

$ cd
$ feenox -v

/ / 15/18

Compilation instructions

FeenoX v0.2.14-gbbf48c9
a free no-fee no-X uniX-like finite-element(ish) computational engineering tool

Copyright © 2009--2022 Seamplex, https://seamplex.com/feenox
GNU General Public License v3+, https://www.gnu.org/licenses/gpl.html.
FeenoX is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.
$

If it is not and you went through the $HOME/bin path, make sure it is in the PATH (pun). Add
export PATH=${PATH}:${HOME}/bin

to your .bashrc in your home directory and re-login.

3 Advanced settings

3.1 Compiling with debug symbols

By default the C flags are -O3, without debugging. To add the -g flag, just use CFLAGS when configuring:

./configure CFLAGS="-g -O0"

3.2 Using a different compiler

Without PETSc, FeenoX uses the CC environment variable to set the compiler. So configure like

./configure CC=clang

When PETSc is detected FeenoX uses the mpicc executable, which is a wrapper to an actual C compiler with
extra flags needed to find the headers and the MPI library. To change the wrapped compiler, you should set
MPICH_CC or OMPI_CC, depending if you are using MPICH or OpenMPI. For example, to force MPICH to use clang

do

./configure MPICH_CC=clang CC=clang

To knowwhich is the default MPI implementation, just run ./configurewithout arguments and pay attention to
the “Compiler” line in the “Summary of dependencies” section. For example, for OpenMPI a typical summary
would be

Summary of dependencies

GNU Scientific Library from system
SUNDIALS yes
PETSc yes /usr/lib/petsc
SLEPc yes /usr/lib/slepc
Compiler gcc -I/usr/lib/x86_64-linux-gnu/openmpi/include/openmpi -I/usr/lib/x86_64-linux- ←↩

gnu/openmpi/include -pthread -L/usr/lib/x86_64-linux-gnu/openmpi/lib -lmpi

/ / 16/18

Compilation instructions

For MPICH:

Summary of dependencies

GNU Scientific Library from system
SUNDIALS yes
PETSc yes /home/gtheler/libs/petsc-3.15.0 arch-linux2-c-debug
SLEPc yes /home/gtheler/libs/slepc-3.15.1
Compiler gcc -Wl,-z,relro -I/usr/include/x86_64-linux-gnu/mpich -L/usr/lib/x86_64-linux-gnu ←↩

-lmpich

Other non-free implementations like Intel MPI might work but were not tested. However, it should be noted
that the MPI implementation used to compile FeenoX has to match the one used to compile PETSc. Therefore,
if you compiled PETSc on your own, it is up to you to ensure MPI compatibility. If you are using PETSc
as provided by your distribution’s repositories, you will have to find out which one was used (it is usually
OpenMPI) and use the same one when compiling FeenoX.

The FeenoX executable will show the configured compiler and flags when invoked with the --versions option:

$ feenox --versions
FeenoX v0.2.14-gbbf48c9
a free no-fee no-X uniX-like finite-element(ish) computational engineering tool

Last commit date : Sat Feb 12 15:35:05 2022 -0300
Build date : Sat Feb 12 15:35:44 2022 -0300
Build architecture : linux-gnu x86_64
Compiler version : gcc (Debian 10.2.1-6) 10.2.1 20210110
Compiler expansion : gcc -Wl,-z,relro -I/usr/include/x86_64-linux-gnu/mpich -L/usr/lib/x86_64-linux-gnu - ←↩

lmpich
Compiler flags : -O3
Builder : gtheler@tom
GSL version : 2.6
SUNDIALS version : 5.7.0
PETSc version : Petsc Release Version 3.16.3, Jan 05, 2022
PETSc arch : arch-linux-c-debug
PETSc options : --download-eigen --download-hdf5 --download-hypre --download-metis --download-mumps -- ←↩

download-parmetis --download-pragmatic --download-scalapack
SLEPc version : SLEPc Release Version 3.16.1, Nov 17, 2021
$

Note that the reported values are the ones used in configure and not in make. Thus, the recommended way to
set flags is in configure and not in make.

3.3 Compiling PETSc

Particular explanation for FeenoX is to be done. For now, follow the general explanation from PETSc’s website.

export PETSC_DIR=$PWD
export PETSC_ARCH=arch-linux-c-opt

/ / 17/18

https://petsc.org/release/install/

Compilation instructions

./configure --with-debugging=0 --download-mumps --download-scalapack --with-cxx=0 --COPTFLAGS=-O3 -- ←↩
FOPTFLAGS=-O3

export PETSC_DIR=$PWD
./configure --with-debugging=0 --with-openmp=0 --with-x=0 --with-cxx=0 --COPTFLAGS=-O3 --FOPTFLAGS=-O3
make PETSC_DIR=/home/ubuntu/reflex-deps/petsc-3.17.2 PETSC_ARCH=arch-linux-c-opt all

/ / 18/18

	Quickstart
	Detailed configuration and compilation
	Mandatory dependencies
	The GNU Scientific Library

	Optional dependencies
	SUNDIALS
	PETSc
	SLEPc

	FeenoX source code
	Git repository
	Source tarballs

	Configuration
	Source code compilation
	Test suite
	Installation

	Advanced settings
	Compiling with debug symbols
	Using a different compiler
	Compiling PETSc

