FeenoX Software Design Specification

Jan/18/2022

Abstract

This Software Design Specifications (SDS) document applies to an imaginary Software Requirement Specifica-
tions (SRS) document issued by a fictitious agency asking for vendors to offer a free and open source cloud-
based computational tool to solve engineering problems. The latter can be seen as a request for quotation and
the former as an offer for the fictitious tender. Each section of this SDS addresses one section of the SRS. The
original text from the SRS is shown quoted at the very beginning before the actual SDS content.

Contents

1 Introduction

1.1 Objective o e
1.2 Scope . . . e e e
2 Architecture

2.1 Deployment
22 Execution.

221 Directexecution o oo
23 Parametric

23.1 Optimization loops L
24 Efficiency
2.5 Scalability
2.6 Flexibility
2.7 Extensibility
2.8 Interoperability

3 Interfaces
3.1 Probleminput
3.2 Resultsoutput

4 Quality assurance

4.1 Reproducibility and traceability L L L
42 Automatedtesting
4.3 Bugreportingandtracking L Lo
44 Verification
45 Validation
4.6 Documentation e

A Appendix: Downloading and compiling FeenoX

A.1 Binaryexecutables
A2 Sourcetarballs
A3 Gitrepository e e e

Jan/18/2022 / 4ddc623+€

12
19
20
21
23
25
27
30
31
36
37

43
43
44

45
45
46
46
47
48
49

FeenoX Software Design Specification

B Appendix: Rules of UNIX philosophy 54
B.1 Ruleof Modularity 54
B.2 Ruleof Clarity 54
B.3 Ruleof Composition. e 54
B.4 RuleofSeparation 55
B.5 Ruleof Simplicity e 55
B.6 RuleofParsimony 55
B.7 Ruleof Transparency o it 55
B.8 Ruleof Robustness 56
B.9 Rule of Representation 56
B.10 Rule of Least Surprise L 56
B.11 Ruleof Silence 56
B.12 Ruleof Repair 56
B.13 Ruleof Economy 57
B.14 Rule of Generation 57
B.15 Rule of Optimization 57
B.16 Ruleof Diversity 57
B.17 Rule of Extensibility 58

C Appendix: Downloading & compiling 59
C.1 Quickstart 60
C.2 Detailed configuration and compilation oo L 61

C.2.1 Mandatory dependencies. 61

C.2.2 Optional dependencies L 62

C.23 FeenoXsourcecode 63

C.24 Configuration L 64

C.2.5 Source code compilation L 65

C.2.6 Testsuite 67

C.2.7 Imstallation 67

C.3 Advancedsettings e 67
C.3.1 Compiling with debug symbols o 67

C.3.2 Using adifferent compiler L 67

C.33 Compiling PETSc 69
Jan/18/2022 / v0.2+ / 4ddc623+e 2/69

Chapter 1

Introduction

A computational tool (herein after referred to as the tool) specifically designed to be executed
in arbitrarily-scalable remote server (i.e. in the cloud) is required in order to solve engineering
problems following the current state-of-the-art methods and technologies impacting the high-
performance computing world. This (imaginary but plausible) Software Requirements Specifica-
tion document describes the mandatory features this tool ought to have and lists some features
which would be nice the tool had. Also it contains requirements and guidelines about architecture,
execution and interfaces in order to fulfill the needs of cognizant engineers as of 2022 (and the
years to come) are defined.

On the one hand, the tool should allow to solve industrial problems under stringent efficiency
(sec. 2.4) and quality (sec. 4) requirements. It is therefore mandatory to be able to assess the source
code for

« independent verification, and/or
« performance profiling, and/or
« quality control

by qualified third parties from all around the world, so it has to be open source according to the
definition of the Open Source Initiative.

On the other hand, the initial version of the tool is expected to provide a basic functionality which
might be extended (sec. 1.1 and sec. 2.7) by academic researchers and/or professional programmers.
It thus should also be free—in the sense of freedom, not in the sense of price—as defined by the Free
Software Foundation. There is no requirement on the pricing scheme, which is up to the vendor to
define in the offer along with the detailed licensing terms. These should allow users to solve their
problems the way they need and, eventually, to modify and improve the tool to suit their needs. If
they cannot program themselves, they should have the freedom to hire somebody to do it for them.

Besides noting that software being free (regarding freedom, not price) does not imply the same as being open
source, the requirement is clear in that the tool has to be both free and open source, a combination which is
usually called FOSS. This condition leaves all of the well-known non-free (i.e. incorrectly-called “commercial”)
finite-element solvers available in the market (NASTRAN, Abaqus, ANSYS, Midas, etc.) out of the tender.

Jan/18/2022 / 4ddc623+€

https://en.wikipedia.org/wiki/Free_and_open-source_software
https://www.gnu.org/philosophy/words-to-avoid.en.html#Commercial

FeenoX Software Design Specification

FeenoX is licensed under the terms of the GNU General Public License version 3 or, at the user convenience,
any later version. This means that users get the four essential freedoms:!

0. The freedom to run the program as they wish, for any purpose.

1. The freedom to study how the program works, and change it so it does their computing as they wish.
2. The freedom to redistribute copies so they can help others.

3. The freedom to distribute copies of their modified versions to others.

So a free program has to be open source, but it also has to explicitly provide the four freedoms above both
through the written license and through the mechanisms available to get, modify, compile, run and document
these modifications. That is why licensing FeenoX as GPLv3+ also implies that the source code and all the
scripts and makefiles needed to compile and run it are available for anyone that requires it. Anyone wanting
to modify the program either to fix bugs, improve it or add new features is free to do so. And if they do not
know how to program, the have the freedom to hire a programmer to do it without needing to ask permission
to the original authors.

Nevertheless, since these original authors are the copyright holders, they still can use it to either enforce
or prevent further actions from the users that receive FeenoX under the GPLv3+. In particular, the license
allows re-distribution of modified versions only if they are clearly marked as different from the original and
only under the same terms of the GPLv3+. There are also some other subtle technicalities that need not be
discussed here such as what constitutes a modified version (which cannot be redistributed under a different
license) and what is an aggregate (in which each part be distributed under different licenses) and about usage
over a network and the possibility of using AGPL instead of GPL to further enforce freedom (TL;DR: it does
not matter for FeenoX), but which are already taken into account in FeenoX licensing scheme.

It should be noted that not only is FeenoX free and open source, but also all of the libraries it depends (and
their dependencies) are. It can also be compiled using free and open source build tool chains running over
free and open source operating systems. In addition, the FeenoX documentation is licensed under the terms
of the GNU Free Documentation License v1.3 (or any later version).

1.1 Objective

The main objective of the tool is to be able to solve engineering problems which are usually casted
as differential-algebraic equations (DAEs) or partial differential equations (PDEs), such as

+ heat conduction

« mechanical elasticity

« structural modal analysis
« frequency studies

'There are some examples of pieces of computational software which are described as “open source” in which even the first of
the four freedoms is denied. The most iconic case is that of Android, whose sources are readily available online but there is no
straightforward way of updating one’s mobile phone firmware with a customized version, not to mention vendor and hardware lock
ins and the possibility of bricking devices if something unexpected happens. In the nuclear industry, it is the case of a Monte Carlo
particle-transport program that requests users to sign an agreement about the objective of its usage before allowing its execution. The
software itself might be open source because the source code is provided after signing the agreement, but it is not free (as in freedom)
at all.

Jan/18/2022 / v0.2+ / 4ddc623+€ 4/69

https://www.gnu.org/licenses/gpl-3.0
https://en.wikipedia.org/wiki/GNU_Affero_General_Public_License
https://www.gnu.org/licenses/fdl-1.3.html

FeenoX Software Design Specification

« electromagnetism

+ chemical diffusion

« process control dynamics

« computational fluid dynamics

on one or more mainstream cloud servers, i.e. computers with hardware and operating systems
(futher discussed in sec. 2) that allows them to be available online and accessed remotely either
interactively or automatically by other computers as well. Other architectures such as high-end
desktop personal computers or even low-end laptops might be supported but they should not the
main target (i.e. the tool has to be cloud-first but laptop-friendly).

The initial version of the tool must be able to handle a subset of the above list of problem types.
Afterward, the set of supported problem types, models, equations and features of the tool should
grow to include other models as well, as required in sec. 2.7.

The choice of the initial supported features is based on the types of problem that the FeenoX’ precursor codes
(namely wasora, Fino and milonga, referred to as “previous versions” from now on) already have been support-
ing since more than ten years now. It is also a first usable version so scope can be bounded. A subsequent road
map and release plans can be designed as requested. FeenoX’ first version includes a subset of the required
functionality, namely

« open and closed-loop dynamical systems

« Laplace/Poisson/Helmholtz equations

+ heat conduction

« mechanical elasticity

« structural modal analysis

« multi-group neutron transport and diffusion

FeenoX is designed to be developed and executed under GNU/Linux, which is the architecture of more than
95% of the internet servers which we collectively call “the cloud.” It should be noted that GNU/Linux is a POSIX-
compliant version of UNIX and that FeenoX follows the rules of Unix philosophy (further explained in sec. B)
for the actual computational implementation. Besides POSIX, as explained further below in sec. 2.5, FeenoX
also uses MPI which is a well-known industry standard for massive execution of parallel processes, both in
multi-core hosts and multi-hosts environments. Finally, if performance and/or scalability are not important
issues, FeenoX can be run in a (properly cooled) local PC or laptop.

The requirement to run in the cloud and scale up as needed rules out some the open source solver CalculiX.
There are some other requirements in the SRS that also leave CalculiX out of the tender.

1.2 Scope

The tool should allow users to define the problem to be solved programmatically. That is to say,
the problem should be completely defined using one or more files either...

a. specifically formatted for the tool to read such as JSON or a particular input format (histori-

Jan/18/2022 / v0.2+ / 4ddc623+€ 5/69

http://www.calculix.de/

FeenoX Software Design Specification

cally called input decks in punched-card days), and/or
b. written in an high-level interpreted language such as Python or Julia.

It should be noted that a graphical user interface is not required. The tool may include one, but it
should be able to run without needing any interactive user intervention rather than the preparation
of a set of input files. Nevertheless, the tool might allow a GUI to be used. For example, for a
basic usage involving simple cases, a user interface engine should be able to create these problem-
definition files in order to give access to less advanced users to the tool using a desktop, mobile
and/or web-based interface in order to run the actual tool without needing to manually prepare
the actual input files.

However, for general usage, users should be able to completely define the problem (or set of prob-
lems, i.e. a parametric study) they want to solve in one or more input files and to obtain one or
more output files containing the desired results, either a set of scalar outputs (such as maximum
stresses or mean temperatures), and/or a detailed time and/or spatial distribution. If needed, a dis-
cretization of the domain may to be taken as a known input, i.e. the tool is not required to create the
mesh as long as a suitable mesher can be employed using a similar workflow as the one specified
in this SRS.

The tool should define and document (sec. 4.6) the way the input files for a solving particular
problem are to be prepared (sec. 3.1) and how the results are to be written (sec. 3.2). Any GUI, pre-
processor, post-processor or other related graphical tool used to provide a graphical interface for
the user should integrate in the workflow described in the preceding paragraph: a pre-processor
should create the input files needed for the tool and a post-processor should read the output files
created by the tool.

Indeed, FeenoX is designed to work very much like a transfer function between one (or more) files and zero
or more output files:

B +

mesh (*.msh) } | | { terminal

data (*.dat) } input ----> | FeenoX |----> output { data files

input (*.fee) } | | { post (vtk/msh)
o +

Technically speaking, FeenoX can be seen as a Unix filter designed to read an ASCII-based stream of characters
(i.e. the input file, which in turn can include other input files or contain instructions to read data from mesh
and/or other data files) and to write ASCII-formatted data into the standard output and/or other files. The
input file can be created either by a human or by another program. The output stream and/or files can be read
by either a human and/or another programs. A quotation from Eric Raymond’s The Art of Unix Programming
helps to illustrate this idea:

Doug Mcllroy, the inventor of Unix pipes and one of the founders of the Unix tradition, had this
to say at the time:

(i) Make each program do one thing well. To do a new job, build afresh rather than complicate
old programs by adding new features.

Jan/18/2022 / v0.2+ / 4ddc623+€ 6/69

http://www.catb.org/esr/
http://www.catb.org/esr/writings/taoup/
https://en.wikipedia.org/wiki/Douglas_McIlroy
https://en.wikipedia.org/wiki/Pipeline_%28Unix%29
https://en.wikipedia.org/wiki/Unix

FeenoX Software Design Specification

(ii) Expect the output of every program to become the input to another, as yet unknown, pro-
gram. Don’t clutter output with extraneous information. Avoid stringently columnar or
binary input formats. Don’t insist on interactive input.

[...]
He later summarized it this way (quoted in “A Quarter Century of Unix” in 1994):

« This is the Unix philosophy: Write programs that do one thing and do it well. Write programs
to work together. Write programs to handle text streams, because that is a universal interface.

Keep in mind that even though

i. the quotes above, and
ii. many FEA programs that are still mainstream today

date both from the early 1970s, fifty years later they still

+ do not make just only one thing well,

« do complicate old programs by adding new features,

« do not expect the their output to become the input to another,

« do clutter output with extraneous information,

+ do use stringently columnar and/or binary input (and output!) formats, and/or
« do insist on interactive output.

For example, let us consider the famous chaotic Lorenz’ dynamical system. Here is one way of getting an
image of the butterfly-shaped attractor using FeenoX to compute it and gnuplot to draw it. Solve

& =o-(y—1)

=z-(r—z)—y
z =uxy—bz
for 0 < t < 40 with initial conditions
z(0) = —11
y(0) = ~16
z(0) =225

and 0 = 10, r = 28 and b = 8/3, which are the classical parameters that generate the butterfly as presented
by Edward Lorenz back in his seminal 1963 paper Deterministic non-periodic flow.

The following ASCII input file ressembles the parameters, inital conditions and differential equations of the
problem as naturally as possible:

PHASE_SPACE x y z # Lorenz 'attractors phase space is x-y-z
end_time = 40 # we go from t=0 to 40 non-dimensional units

3

sigma = 10 the original parameters from the 1963 paper

Jan/18/2022 / v0.2+ / 4ddc623+€ 7/69

http://en.wikipedia.org/wiki/Lorenz_system
http://www.gnuplot.info/
http://journals.ametsoc.org/doi/abs/10.1175/1520-0469%281963%29020%3C0130%3ADNF%3E2.0.CO%3B2

FeenoX Software Design Specification

r =128

b =28/3

x 0 = -11 # initial conditions
y 0 = -16

z 0 =22.5

the dynamical system's equations written as naturally as possible
X dot = sigma*(y - Xx)

y dot = x*(r - z) -y

z dot = x*y - b*z

PRINT t X y 2 # four-column plain-ASCII output

-25
20 -30

X 15

Figure 1.1: The Lorenz attractor solved with FeenoX and drawn with Gnuplot

Indeed, when executing FeenoX with this input file, we get four ASCII columns (¢, x, y and z) which we can
then redirect to a file and plot it with a standard tool such as Gnuplot. Note the importance of relying on
plain ASCII text formats both for input and output, as recommended by the UNIX philosophy and the rule of
composition: other programs can easily create inputs for FeenoX and other programs can easily understand
FeenoX’ outputs. This is essentially how UNIX filters and pipes work.

As already stated, FeenoX is designed and implemented following the UNIX philosophy in general and Eric
Raymond’s 17 Unix Rules ([sec:unix]) in particular. One of the main ideas is the rule of separation that essen-
tially asks to separate mechanism from policy, that in the computational engineering world translates into
separating the frontend from the backend. The usage of FeenoX to compute and of Gnuplot to plot is a clear
example of separation. Same idea applies to PDEs, where the mesh is created with Gmsh and the output can be
post-processed with Gmsh, Paraview or any other post-processing system (even a web-based interface) that
follows rule of separation. Even though most FEA programs eventually separate the interface from the solver
up to some degree, there are cases in which they are still dependent such that changing the former needs
updating the latter.

Jan/18/2022 / v0.2+ / 4ddc623+€ 8/69

FeenoX Software Design Specification

From the very beginning, FeenoX is designed as a pure backend which should nevertheless provide appropriate
mechanisms for different frontends to be able to communicate and to provide a friendly interface for the final
user. Yet, the separation is complete in the sense that the nature of the frontends can radically change (say from
a desktop-based point-and-click program to a web-based immersive augmented-reality application) without
needing the modify the backend. Not only far more flexibility is given by following this path, but also develop
efficiency and quality is encouraged since programmers working on the lower-level of an engineering tool
usually do not have the skills needed to write good user-experience interfaces, and conversely.

In the very same sense, FeenoX does not discretize continuous domains for PDE problems itself, but relies
on separate tools for this end. Fortunately, there already exists one meshing tool which is FOSS (GPLv2) and
shares most (if not all) of the design basis principles with FeenoX: the three-dimensional finite element mesh
generator Gmsh. Strictly speaking, FeenoX does not need to be used along with Gmsh but with any other
mesher able to write meshes in Gmsh’s format .msh. But since Gmsh also

« is free and open source,

« works also in a transfer-function-like fashion,

« runs natively on GNU/Linux,

« has a similar (but more comprehensive) API for Python/Julia,
 etc.

it is a perfect match for FeenoX. Even more, it provides suitable domain decomposition methods (through
other FOSS third-party libraries such as Metis) for scaling up large problems.

Let us solve the linear elasticity benchmark problem NAFEMS LE10 “Thick plate pressure” Assuming a proper
mesh has already been created in Gmsh, note how well the FeenoX input file matches the problem statement:

NAFEMS Benchmark LE-10: thick plate pressure
PROBLEM mechanical DIMENSIONS 3
READ_MESH nafems-lel@.msh # mesh in millimeters

LOADING: uniform normal pressure on the upper surface
BC upper p=1 # 1 Mpa

BOUNDARY CONDITIONS:
BC DCD'C' v=0
BC ABA'B' u=0
BC BCB'C' u=0 v=0
BC midplane w=0

Face DCD'C' zero y-displacement
Face ABA'B’ zero x-displacement
Face BCB'C' x and y displ. fixed
z displacements fixed along mid-plane

S S S s S

MATERIAL PROPERTIES: isotropic single-material properties

E = 210e3 # Young modulus in MPa
nu=0.3 # Poisson's ratio
SOLVE_PROBLEM # solve!

print the direct stress y at D (and nothing more)
PRINT "sigma y @ D = " sigmay(2000,0,300) "MPa"

The problem asks for the normal stress in the y direction o, at point “D;” which is what FeenoX writes (and
nothing else, rule of economy):

|
$ feenox nafems-1el0.fee

Jan/18/2022 / v0.2+ / 4ddc623+€ 9/69

http://gmsh.info/
http://glaros.dtc.umn.edu/gkhome/metis/metis/overview
https://www.nafems.org/publications/resource_center/p18/

FeenoX Software Design Specification

sigma y @ D = -5.38016

$

Also note that since there is only one material there is no need to do an explicit link between material properties
and physical volumes in the mesh (rule of simplicity). And since the properties are uniform and isotropic, a
single global scalar for ¥ and a global single scalar for v are enough.

THICK PLATE
PRESSURE

Test No L DATE /1SSUE

MAFETIS 10 5 6-502
ORIGIN NAFEMS report LS82 /—\

ANALYSIS TYPE Linear elastic solid &
GEOMETRY B
J () () -
T—— 325) "\z7s 'oa
Ny
1.75 A
‘l-— ‘
|A °
10 Y
,
Yoy, 2N
BC ABA'B' u=0

) 4
..L Uniits M, KN 06
20 ‘-”’l e BC BCB'C' u=0 v=0

LOADING Uniform normal pressure of 1 MPA on the upper BC midplane w=0
surface of the plate

nafems-le10.fee — Kate v~

Edit View Projects Bookmarks Sessions Tools Settings Help

S

nafems-lel0.fee
NAFEMS Benchmark LE-10: thick plate pressure
PROBLEM mechanical DIMENSIONS 3
READ_MESH nafems-lel®.msh # mesh in millimeters

LOADING: uniform normal pressu
BC upper p=1 # 1 Mpa

e on the upper surface

BOUNDARY CONDITIONS:
BC DCD'C' v=0

MATERIAL PROPERTIES: isotropic single-material properties
BOUNDARY CONDITIONS Face DCD'C’ zero y-displacement E = 210e3 # Yo bdulus in MPa
Face ABA'B' zero x-displacement nu=0.3 # Poisson's ratio
Face BCB'C' x and y displacements fixed,
: s fixed alorfg mid-pl SOLVE_PROBLEM # solve!
MATERIAL PROPERTIES "
Isotropic, E = 210x 103 MPa, v = 0.3 # print the direct stress y at D (and nothing more)
PRINT "sigma y @ D = " sigmay(2000,0,300) "MPa"
ELEMENT TYPES Solid hexahedra, wedges and tetrahedra =
= Linel, Columnl INSERT enUS v SoftTabs:2 v UTF-8 v FeenoX v
MESHES
Q search and Replace [E Current Project
T m——
B 6x4x2
A 2 examples : bash — Konsole <2> v
1.583
J G 1.348 @tom:~/feenox/examples$ feenox nafems-1lel0.fee
sigma y @ D = -5.38136 MPa
1.165_| 0.453 —
@tom:~/feenox/=xamples$ l
be— 2.417
outputT Direct Stress Oyy at point D TARGET 5.38 MPa
(mesh retinement) .

Figure 1.2: The NAFEMS LE10 problem statement and the corresponding FeenoX input

For the sake of visual completeness, post-processing data with the scalar distribution of o, and the vector field
of displacements [u, v, w] can be created by adding one line to the input file:

WRITE_MESH nafems-lelO.vtk sigmay VECTOR u v w

This VTK file can then be post-processed to create interactive 3D views, still screenshots, browser and mobile-
friendly webGL models, etc. In particular, using Paraview one can get a colorful bitmapped PNG (the displace-
ments are far more interesting than the stresses in this problem).

See https://www.caeplex.com for a mobile-friendly web-based interface for solving finite elements in the
cloud directly from the browser.

Even though the initial version of FeenoX does not provide an API for high-level interpreted languages such
as Python or Julia, the code is written in such a way that this feature can be added without needing a major
refactoring. This will allow to fully define a problem in a procedural way, increasing also flexibility.

Jan/18/2022 / v0.2+ / 4ddc623+€ 10/69

https://www.paraview.org
https://www.caeplex.com

FeenoX Software Design Specification

Z sigmay
R -1.6e+01 -10 -5 o] 5 10 1.5e+01
— e————— ! |

Figure 1.3: Normal stress o, refined around point D over 5,000x-warped displacements for LE10 created with Paraview

Jan/18/2022 / v0.2+ / 4ddc623+¢ 11/69

Chapter 2

Architecture

The tool must be aimed at being executed unattended on remote servers which are expected to
have a mainstream (as of the 202s) architecture regarding operating system (GNU/Linux variants
and other UNIX-like OSes) and hardware stack, such as

« a few Intel-compatible CPUs per host

« afew levels of memory caches

« afew gigabytes of random-access memory
« several gigabytes of solid-statee storage

It should successfully run on

« bare-metal
« virtual servers
« containerized images

using standard compilers, dependencies and libraries already available in the repositories of most
current operating systems distributions.

Preference should be given to open source compilers, dependencies and libraries. Small problems
might be executed in a single host but large problems ought to be split through several server
instances depending on the processing and memory requirements. The computational implemen-
tation should adhere to open and well-established parallelization standards.

Ability to run on local desktop personal computers and/laptops is not required but suggested as
a mean of giving the opportunity to users to test and debug small coarse computational models
before launching the large computation on a HPC cluster or on a set of scalable cloud instances.
Support for non-GNU/Linux operating systems is not required but also suggested.

Mobile platforms such as tablets and phones are not suitable to run engineering simulations due
to their lack of proper electronic cooling mechanisms. They are suggested to be used to control
one (or more) instances of the tool running on the cloud, and even to pre and post process results
through mobile and/or web interfaces.

Jan/18/2022 / 4ddc623+€

FeenoX Software Design Specification

FeenoX can be seen as a third-system effect, being the third version written from scratch after a first imple-
mentation in 2009 and an second one which was far more complex and had far more features circa 2012-2014.
The third attempt explicitly addresses the “do one thing well” idea from Unix.

Furthermore, not only is FeenoX itself both free and open-source software but, following the rule of composition,
it also is designed to connect and to work with other free and open source software such as

+ Gmsh for pre and/or post-processing

+ ParaView for post-processing

+ Gnuplot for plotting

+ Pyxplot for plotting

« Pandoc for creating tables and documents
+ TeX for creating tables and documents

and many others, which are readily available in all major GNU/Linux distributions.

FeenoX also makes use of high-quality free and open source mathematical libraries which contain numerical
methods designed by mathematicians and programmed by professional programmers. In particuar, it depends
on

+ GNU Scientific Library for general mathematics,
« SUNDIALS IDA for ODEs and DAEs,

« PETSc for PDEs, and

« SLEPc for PDEs involving eigen problems

Therefore, if one zooms in into the block of the transfer function above, FeenoX can also be seen as a glue
layer between the input file and the mesh defining a PDE-casted problem and the mathematical libraries used
to solve the discretized equations. This way, FeenoX bounds its scope to do only one thing and to do it well: to
build and solve finite-element formulations of thermo-mechanical problems. And it does so on high grounds,
both

i. ethical: since it is free software, all users can

run,
share,

modify, and/or

re-share their modifications.

@ = o

If a user cannot read or write code to make FeenoX suit her needs, at least she has the freedom to hire
someone to do it for her, and

ii. technological: since it is open source, advanced users can detect and correct bugs and even improve the
algorithms. Given enough eyeballs, all bugs are shallow.

FeenoX’ main development architecture is Debian GNU/Linux running over 64-bits Intel-compatible proces-
sors. All the dependencies are free and/or open source and already available in Debian’s official repositories,
as explained in sec. 2.1.

The POSIX standard is followed whenever possible, allowing thus FeenoX to be compiled in other operating

Jan/18/2022 / v0.2+ / 4ddc623+€ 13/69

https://www.gnu.org/philosophy/free-sw.en.html
https://opensource.com/resources/what-open-source
http://gmsh.info/
https://www.paraview.org/
http://gnuplot.info/
http://www.pyxplot.org.uk/
https://pandoc.org/
https://tug.org/
https://www.gnu.org/software/gsl/
https://computing.llnl.gov/projects/sundials/ida
http://https://petsc.org
http://slepc.upv.es/
https://www.gnu.org/philosophy/open-source-misses-the-point.en.html
http://www.catb.org/~esr/writings/cathedral-bazaar/cathedral-bazaar/
https://en.wikipedia.org/wiki/Linus%27s_law

FeenoX Software Design Specification

systems and architectures such as Windows (using Cygwin) and MacOS. The build procedure is the well-
known and mature ./configure && make command.

FeenoX is written in plain C conforming to the ISO C99 specification (plus POSIX extensions), which is a
standard, mature and widely supported language with compilers for a wide variety of architectures. For its
basic mathematical capabilities, FeenoX uses the GNU Scientifc Library. For solving ODEs/DAEs, FeenoX
relies on Lawrence Livermore’s SUNDIALS library. For PDEs, FeenoX uses Argonne’s PETSc library and
Universitat Politécnica de Valéncia’s SLEPc library. All of them are

« free and open source,

o written in C (neither Fortran nor C++),

« mature and stable,

« actively developed and updated,

« very well known in the industry and academia.

Moreover, PETSc and SLEPc are scalable through the MPI standard (further discussed in sec. 2.5). This means
that programs using both these libraries can run on either large high-performance supercomputers or low-end
laptops. FeenoX has been run on

« Raspberry Pi

+ Laptop (GNU/Linux & Windows 10)
« Macbook

« Desktop PC

« Bare-metal servers

« Vagrant/Virtualbox

+ Docker/Kubernetes

« AWS/DigitalOcean/Contabo

Due to the way that FeenoX is designed and the policy separated from the mechanism, it is possible to control
a running instance remotely from a separate client which can eventually run on a mobile device (fig. 2.1).

The following example illustrates how well FeenoX works as one of many links in a chain that goes from tracing
a bitmap with the problem’s geometry down to creating a nice figure with the results of a computation:

Say you are Homer Simpson and you want to solve a maze drawn in a restaurant’s placemat, one where both
the start and end are known beforehand as show in fig. 2.2. In order to avoid falling into the alligator’s mouth,
you can exploit the ellipticity of the Laplacian operator to solve any maze (even a hand-drawn one) without
needing any fancy Al or ML algorithm. Just FeenoX and a bunch of standard open source tools to convert a
bitmapped picture of the maze into an unstructured mesh.

1. Goto http://www.mazegenerator.net/
2. Create a maze

3. Download it in PNG (fig. 2.3a)

4. Perform some conversions

« PNG — PNM — SVG — DXF — GEO

Jan/18/2022 / v0.2+ / 4ddc623+€ 14/69

https://www.cygwin.com/
https://www.gnu.org/software/gsl/
https://computing.llnl.gov/projects/sundials/ida
https://www.mcs.anl.gov/petsc/
https://slepc.upv.es/
https://www.mcs.anl.gov/research/projects/mpi/standard.html
http://www.mazegenerator.net/

FeenoX Software Design Specification

Figure 2.1: The web-based platform CAEplex is mobile-friendly. https://www.youtube.com/watch?v=7KqiMbrSLDc

ST i e
F= gy - el e e e S s, .

Figure 2.2: Homer trying to solve a maze on a placemat

Jan/18/2022 / v0.2+ / 4ddc623+¢ 15/69

https://www.caeplex.com
https://www.youtube.com/watch?v=7KqiMbrSLDc

FeenoX Software Design Specification

start

'

end

(a) Bitmapped maze from https://www.mazegenerator.net (left) and 2D mesh (right)

(b) Solution to found by FeenoX (and drawn by Gmsh)

Figure 2.3: Bitmapped, meshed and solved mazes.

Jan/18/2022 / v0.2+ / 4ddc623+¢ 16/69

https://www.mazegenerator.net

FeenoX Software Design Specification

$ wget http://www.mazegenerator.net/static/orthogonal maze with 20 by 20 cells.png
$ convert orthogonal maze with 20 by 20 cells.png -negate maze.png
$ potrace maze.pnm --alphamax 0 --opttolerance 0 -b svg -0 maze.svg

$./svg2dxf maze.svg maze.dxf
$./dxf2geo maze.dxf 0.1

5. Open it with Gmsh

+ Add a surface
« Set physical curves for “start” and “end”

6. Mesh it (fig. 2.3a)

|
gmsh -2 maze.geo

7. Solve V2¢ = 0 with BCs

¢=0 at “start”
o=1 at “end”
V¢ -nn=0 everywhere else

PROBLEM laplace 2D # pretty self-descriptive, isn't it?
READ_MESH maze.msh

boundary conditions (default is homogeneous Neumann)
BC start phi=0
BC end phi=1

SOLVE_PROBLEM

write the norm of gradient as a scalar field
and the gradient as a 2d vector into a .msh file
WRITE_MESH maze-solved.msh \
sqrt(dphidx(x,y)”~2+dphidy(x,y)"2) \
VECTOR dphidx dphidy 0

$ feenox maze.fee

$

8. Open maze-solved.msh, go to start and follow the gradient V¢!

Jan/18/2022 / v0.2+ / 4ddc623+€ 17/69

FeenoX Software Design Specification

e . = - &
OO,

(@) (b)

Figure 2.4: Any arbitrary maze (even hand-drawn) can be solved with FeenoX

Jan/18/2022 / v0.2+ / 4ddc623+€ 18/69

FeenoX Software Design Specification

2.1 Deployment
The tool should be easily deployed to production servers. Both

a. an automated method for compiling the sources from scratch aiming at obtaining optimized
binaries for a particular host architecture should be provided using a well-established proce-
dures, and

b. one (or more) generic binary version aiming at common server architectures should be pro-

vided.

Either option should be available to be downloaded from suitable online sources, either by real
people and/or automated deployment scripts.

As already stated, FeenoX can be compiled from its sources using the well-established configure & make <«
procedure. The code’s source tree is hosted on Github so cloning the repository is the preferred way to obtain
FeenoX, but source tarballs are periodically released too according to the requirements in sec. 4.1.

The configuration and compilation is based on GNU Autotools that has more than thirty years of maturity and
it is the most portable way of compiling C code in a wide variety of UNIX variants. It has been tested with

« GNU C compiler
« LLVM Clang compiler
« Intel C compiler

FeenoX depends on the four open source libraries stated in sec. 2, with the last three of them being optional.
The only mandatory library is the GNU Scientific Library which is part of the GNU/Linux operating system
and as such is readily available in all distributions as 1ibgs1-dev. The sources of the rest of the optional libraries
are also widely available in most common GNU/Linux distributions.

In effect, doing
\

sudo apt-get install gcc make libgsl-dev libsundials-dev petsc-dev slepc-dev

is enough to provision all the dependencies needed compile FeenoX from the source tarball with the full set of
features. If using the Git repository as a source, then Git itself and the GNU Autoconf and Automake packages
are also needed:

|
sudo apt-get install git autoconf automake
|

Even though compiling FeenoX from sources is the recommended way to obtain the tool, since the target
binary can be compiled using particularly suited compilation options, flags and optimizations (especially those
related to MPI, linear algebra kernels and direct and/or iterative sparse solvers), there are also tarballs with
usable binaries for some of the most common architectures—including some non-GNU/Linux variants. These
binary distributions contain statically-linked executables that do not need any other shared libraries to be
present on the target host, but their flexibility and efficiency is generic and far from ideal. Yet the flexibility
of having an execution-ready distribution package for users that do not know how to compile C source code
outweights the limited functionality and scalability of the tool.

For example, first PETSc can be built with a -ofast flag:

Jan/18/2022 / v0.2+ / 4ddc623+€ 19/69

https://www.gnu.org/software/automake/manual/html_node/Autotools-Introduction.html
https://git-scm.com/
https://www.gnu.org/software/autoconf/
https://www.gnu.org/software/automake/

FeenoX Software Design Specification

cd $PETSC DIR
export PETSC_ARCH=1linux-fast
./configure --with-debug=0 COPTFLAGS=

make -j8
cd $HOME
|

And then not only can FeenoX be configured to use that particular PETSc build but also to use a different
compiler such as Clang instead of GNU GCC and to use the same -ofast flag to compile FeenoX itself:

|
$ git clone https://github.com/seamplex/feenox

$ cd feenox

$./autogen.sh

$ export PETSC_ARCH=1linux-fast

$./configure MPICH CC=clang CFLAGS=-0fast
$ make -j8

make install

If one does not care about the details of the compilation, then a pre-compiled statically-linked binaries can be

directly downloaded very much as when downloading Gmsh:

|
$ wget http://gmsh.info/bin/Linux/gmsh-Linux64.tgz

$ wget https://seamplex.com/feenox/dist/linux/feenox-linux-amd64.tar.gz

Appendix has sec. C more details about how to download and compile FeenoX. The full documentation contains
a compilation guide with further detailed explanations of each of the steps involved. Since all the commands
needed to either download a binary executable or to compile from source with customized optimization flags
can be automatized, FeenoX can be built into a container such as Docker. This way, deployment and scalability
can be customized and tweaked as needed.

2.2 Execution

It is mandatory to be able to execute the tool remotely, either with a direct action from the user or
from a high-level workflow which could be triggered by a human or by an automated script. The
calling party should be able to monitor the status during run time and get the returned error level
after finishing the execution.

The tool shall provide a mean to perform parametric computations by varying one or more problem
parameters in a certain prescribed way such that it can be used as an inner solver for an outer-loop
optimization tool. In this regard, it is desirable if the tool could compute scalar values such that
the figure of merit being optimized (maximum temperature, total weight, total heat flux, minimum
natural frequency, maximum displacement, maximum von Mises stress, etc.) is already available
without needing further post-processing.

As FeenoX is designed to run as a file filter (i.e. as a transfer function between input and output files) and
it explicitly avoids having a graphical interface, the binary executable works as any other UNIX terminal
command. When invoked without arguments, it prints its version (a through explanation of the versioning
scheme is given in sec. 4.1), a one-line description and the usage options:

Jan/18/2022 / v0.2+ / 4ddc623+€ 20/69

https://seamplex.com/feenox/doc/compilation.html

FeenoX Software Design Specification

$ feenox
FeenoX v0.1.77-99325958
a free no-fee no-X uniX-like finite-element(ish) computational engineering tool

usage: feenox [options] inputfile [replacement arguments]

-h, --help display usage and commmand-line help and exit
-v, --version display brief version information and exit
-V, --versions display detailed version information

-s, --sumarize list all symbols in the input file and exit

Instructions will be read from standard input if “”- is passed as
inputfile, i.e.

$ echo "PRINT 2+2" | feenox -
4

Report bugs at https://github.com/seamplex/feenox or to jeremy@seamplex.com
Feenox home page: https://www.seamplex.com/feenox/

|
The program can also be executed remotely

1. on a server through a SSH session
2. in a container as part of a provisioning script

FeenoX provides mechanisms to inform its progress by writing certain information to devices or files, which
in turn can be monitored remotely or even trigger server actions. Progress can be as simple as an ASCII bar
(triggered with --progress) to more complex mechanisms like writing the status in a shared memory segment.

Regarding its execution, there are three ways of solving problems: direct execution, parametric runs and
optimization loops.

2.2.1 Direct execution

When directly executing FeenoX, one gives a single argument to the executable with the path to the main
input file. For example, the following input computes the first twenty numbers of the Fibonacci sequence
using the closed-form formula

_e" (A=)

where ¢ = (1 4 /5)/2 is the Golden ratio:

the Fibonacci sequence using the closed—form formula as a function
phi = (l+sqrt(5))/2

f(n) = (phi*n - (1-phi)~n)/sqrt(5)

PRINT_FUNCTION f MIN 1 MAX 20 STEP 1

FeenoX can be directly executed to print the function f(n) forn = 1,..., 20 both to the standard output and
to a file named one (because it is the first way of solving Fibonacci with Feenox):

Jan/18/2022 / v0.2+ / 4ddc623+€ 21/69

https://en.wikipedia.org/wiki/Fibonacci_number
https://en.wikipedia.org/wiki/Golden_ratio

FeenoX Software Design Specification

feenox fibo formula.fee | tee one

$
1
2
3
4
5
6
7
8
9

Now, we could also have computed these twenty numbers by using the direct definition of the sequence into
a vector f of size 20. This time we redirect the output to a file named two:

the fibonacci sequence as a vector
VECTOR f SIZE 20

flil<l:2> =1
fli]l<3:vecsize(f)> = f[i-2] + f[i-1]

PRINT_VECTOR i f

$ feenox fibo vector.fee > two

$

Finally, we print the sequence as an iterative problem and check that the three outputs are the same:

the fibonacci sequence as an iterative problem

static_steps = 20
#static_iterations = 1476 # limit of doubles

IF step static=1|step static=2

fn=1

f nminusl = 1
f _nminus2 =1
ELSE

f_n = f_nminusl + f_nminus2
f nminus2 = f nminusl

f nminusl = f n

ENDIF

Jan/18/2022 / v0.2+ / 4ddc623+€ 22/69

FeenoX Software Design Specification

PRINT step static f n

$ feenox fibo iterative.fee > three
$ diff one two

$ diff two three
$

These three calls were examples of direct execution of FeenoX: a single call with a single argument to solve a
single fixed problem.

2.3 Parametric

To use FeenoX in a parametric run, one has to successively call the executable passing the main input file path
in the first argument followed by an arbitrary number of parameters. These extra parameters will be expanded
as string literals $1, $2, etc. appearing in the input file. For example, if hello. fee is

PRINT "Hello $1!"

then

|
$ feenox hello.fee World

Hello World!

$ feenox hello.fee Universe
Hello Universe!
$

To have an actual parametric run, an external loop has to successively call FeenoX with the parametric ar-
guments. For example, say this file cantilever.fee fixes the face called “left” and sets a load in the negative z
direction of a mesh called cantilever-$1-$2.msh. The output is a single line containing the number of nodes of
the mesh and the displacement in the vertical direction w(500, 0, 0) at the center of the cantilever’s free face:

PROBLEM elastic 3D
READ_MESH cantilever-$1-$2.msh # in meters

E = 2.1ell
nu = 0.3

Young modulus in Pascals
Poisson's ratio

BC left fixed
BC right tz=-1e5 # traction in Pascals, negative z

SOLVE_PROBLEM

z-displacement (components are u,v,w) at the tip vs. number of nodes
PRINT nodes w(500,0,0) "\# $1 $2"

Now the following Bash script first calls Gmsh to create the meshes cantilever-${etlement}-${c}.msh where

« ${element}: tet4, tet10, hex8, hex20, hex27
e ${c}: 1,2,...,10

Jan/18/2022 / v0.2+ / 4ddc623+€ 23/69

FeenoX Software Design Specification

(a) Tetrahedra (b) Hexahedra

Figure 2.5: Cantilevered beam meshed with structured tetrahedra and hexahedra

It then calls FeenoX with the input above and passes ${element} and ${c} as extra arguments, which then are
expanded as $1 and s2 respectively.

#!/bin/bash

rm -f *.dat
for element in tet4 tetl® hex8 hex20 hex27; do
for c in $(seq 1 10); do

create mesh if not alreay cached
mesh=cantilever-${element}-${c}
if [! -e ${mesh}.msh]; then
scale=$(echo "PRINT 1/${c}" | feenox -)
gmsh -3 -v 0 cantilever-${element}.geo -clscale ${scale} -o ${mesh}.msh
fi

call FeenoX
feenox cantilever.fee ${element} ${c} | tee -a cantilever-${element}.dat

done
done

After the execution of the Bash script, thanks to the design decision that output is 100% defined by the user (in
this case with the PRINT instruction), one has several files cantilever-${element}.dat files. When plotted, these
show the shear locking effect of fully-integrated first-order elements as illustrated in fig. 2.6. The theoretical
Euler-Bernoulli result is just a reference as, among other things, it does not take into account the effect of the
material’s Poisson’s ratio. Note that the abscissa shows the number of nodes, which are proportional to the
number of degrees of freedom (i.e. the size of the problem matrix) and not the number of elements, which is
irrelevant here and in most problems.

Jan/18/2022 / v0.2+ / 4ddc623+€ 24/69

FeenoX Software Design Specification

0 4
| Euler-Bernoulli
A M- Tet4
b m- Hex8
- Tet10
i —-E- Hex20
E —2x 1074 - A -6- Hex27
z
+ |
g .
g L
2 —4x107* F A
A u AL
—6x107% F
1 1 1 1 1 [N | 1 1 1 1 1 [N | 1 1 >
100 300 1000 3000 10000 30000

Number of nodes

Figure 2.6: Displacement at the free tip of a cantilevered beam vs. number of nodes for different element types

2.3.1 Optimization loops

Optimization loops work very much like parametric runs from the FeenoX point of view. The difference is
mainly on the calling script that has to implement a certain optimization algorithm such as conjugate gradients,
Nelder-Mead, simulated annealing, genetic algorithms, etc. to choose which parameters to pass to FeenoX as
command-line argument. The only particularity on FeenoX’ side is that since the next argument that the
optimization loop will pass might depend on the result of the current step, care has to be taken in order to be
able to return back to the calling script whatever results it needs in order to compute the next arguments. This
is usually just the scalar being optimized for, but it can also include other results such as derivatives or other
relevant data.

To illustrate how to use FeenoX in an optimization loop, let us consider the problem of finding the length ¢;
of a tuning fork (fig. 2.7) such that the fundamental frequency on a free-free oscillation is equal to the base A
frequency at 440 Hz.

This extremely simple input file (rule of simplicity) solves the free-free mechanical modal problem (i.e. without
any Dirichlet boundary condition) and prints the fundamental frequency:

PROBLEM modal 3D MODES 1 # only one mode needed

READ_MESH fork.msh # in [m]

E = 2.07ell # in [Pa]

nu = 0.33

rho = 7829 # in [kg/m"2]

no BCs! It is a free—free vibration problem

Jan/18/2022 / v0.2+ / 4ddc623+€ 25/69

FeenoX Software Design Specification

Figure 2.7: What length £ is needed so the fork vibrates at 440 Hz?

SOLVE_PROBLEM

write back the fundamental frequency to stdout
PRINT f(1)

Note that in this particular case, the FeenoX input files does not expand any command-line argument. The
trick is that the mesh file fork.msh is overwritten in each call of the optimization loop. Since this time the loop
is slightly more complex than in the parametric run of the last section, we now use Python. The function
create mesh() first creates a CAD model of the fork with geometrical parameters r, w, #1 and ¢5. It then meshes
the CAD using n structured hexahedra through the fork’s thickness. Both the CAD and the mesh are created
using the Gmsh Python APL The detailed steps between gmsh.initialize() and gmsh.finalize() are not shown
here, just the fact that this function overwrites the previous mesh and always writes it into the file called fork «+
.msh which is the one that fork. fee reads. Hence, there is no need to pass command-liner arguments to FeenoX.
The full implementation of the function is available in the examples directory of the FeenoX distribution.

import math
import gmsh
import subprocess # to call FeenoX and read back

def create mesh(r, w, 11, 12, n):
gmsh.initialize()

gmsh.write("fork.msh")
gmsh.finalize()
return len(nodes)

def main():
target = 440 # target frequency

Jan/18/2022 / v0.2+ / 4ddc623+€ 26/69

FeenoX Software Design Specification

eps = le-2 # tolerance

r=4.2e-3 # geometric parameters

w = 3e-3

11 = 30e-3

12 = 60e-3

for n in range(1,7): # mesh refinement level
11 = 60e-3 # restart 11 & error
error = 60
while abs(error) > eps: # loop

11 = 11 - le-4*error

mesh with Gmsh Python API

nodes = create mesh(r, w, 11, 12, n)

call FeenoX and read scalar back

TODO: FeenoX Python API (like Gmsh)

result = subprocess.run(['feenox', 'fork.fee'], stdout=subprocess.PIPE)
freq = float(result.stdout.decode('utf-8'))

error = target - freq

print(nodes, 11, freq)

Since the computed frequency depends both on the length ¢; and on the mesh refinement level n, there are
actually two nested loops: one parametric over n = 1,2...,7 and the optimization loop itself that tries to
find ¢; so as to obtain a frequency equal to 440 Hz within 0.01% of error.

[

$ python fork.py > fork.dat

$

Note that the approach used here is to use Gmsh Python API to build the mesh and then fork the FeenoX
executable to solve the fork (no pun intended). There are plans to provide a Python API for FeenoX so the
problem can be set up, solved and the results read back directly from the script instead of needing to do a
fork+exec, read back the standard output as a string and then convert it to a Python float.

Fig. 2.8 shows the results of the combination of the optimization loop over ¢; and a parametric run over n.
The difference for n = 6 and n = 7 is in the order of one hundredth of millimeter.

2.4 Efficiency

It is mandatory to be able to execute the tool automatically in a remote server. The computational
resources needed from this server, i.e. costs measured in

« CPU/GPU time
 random-access memory
« long-term storage

« etc.

needed to solve a problem should be comparable to other similar state-of-the-art cloud-based script-
friendly finite-element tools.

One of the most widely known quotations in computer science is that one that says “premature optimization
is the root of all evil” that is an extremely over-simplified version of Donald E. Knuth’s analysis in hist The Art

Jan/18/2022 / v0.2+ / 4ddc623+€ 27/69

FeenoX Software Design Specification

67.1

67

¢y [mm)]

66.9 [
66.8

66.7

1000 2000 5000 10000 20000 50000

Number of nodes

Figure 2.8: Estimated length /1 needed to get 440 Hz for different mesh refinement levels n

of Computer Programming. Bottom line is that the programmer should not not spend too much time trying
to optimize code based on hunches but based on profiling measurements. Yet a disciplined programmer can
tell when an algorithm will be way too inefficient (say something that scales up like O(n?)) and how small
changes can improve performance (say by understanding how caching levels work). It is also true that usually
an improvement in one aspect leads to a deterioration in another one (e.g. decrease in CPU time by caching
intermediate results increasing RAM usage).

Even though FeenoX is still evolving so it could be premature in many cases, it is informative to compare
running times and memory consumption when solving the same problem with different cloud-friendly
FEA programs. In effect, a serial single-thread single-host comparison of resource usage when solving the
NAFEMS LE10 problem introduced above was performed, using both unstructured tetrahedral and structured
hexahedral meshes. Fig. 2.9 shows two figures of the many ones contained in the detailed report. In general,
FeenoX using the iterative approach based on PETSc’s Geometric-Algebraic Multigrid Preconditioner and
a conjugate gradients solver is faster for (relatively) large problems at the expense of a larger memory
consumption. The curves that use MUMPS confirm the well-known theoretical result that direct linear solvers
are robust but not scalable.

The large memory consumption shown by FeenoX is due to a high level of caching intermediate results. For
instance, all the shape functions evaluated at the integration points are computed once when building the
stiffness matrix, stored in RAM and then re-used when recovering the gradients of the displacements needed
to compute the stresses. There are also a number of non-premature optimization tasks that can improve both
the CPU and memory usage that ought to be performed at later stages of the project.

Jan/18/2022 / v0.2+ / 4ddc623+€ 28/69

https://seamplex.com/feenox/tests/nafems/le10/
https://seamplex.com/feenox/tests/nafems/le10/
https://www.seamplex.com/feenox/tests/nafems/le10/report-tet.html
https://www.seamplex.com/feenox/tests/nafems/le10/report-hex.html
https://www.seamplex.com/feenox/tests/nafems/le10/report-hex.html

FeenoX Software Design Specification

feenox gamQ e aster cholesky —6— calculix cholesky reflex gamg
feenox mumps = » = aster default —-f1--- calculix diagonal reflex hypre
sparselizard mumps = = aster mumps - -X- - calculix spooles reflex mumps
10000 T E
LO00 oo o —
L 4l
)
Q
)
QJ
£
K
=
100000
3 Total degrees of freedom
(a) Wall time vs. number of degrees of freedom
feenox gamQ e aster cholesky —&— calculix cholesky reflex gamg
feenox mumps = > = aster default --+31--- calculix diagonal reflex hypre
sparselizard mumps = = aster mumps - -X- - calculix spooles reflex mumps
1x108 ‘ 5
1x107
o
=
> 6
S 1x10
€
Q
=
100000 [
10000 ‘
100000
F::3 Total degrees of freedom

(b) Memory vs. number of degrees of freedom

Figure 2.9: Resource consumption when solving the NAFEMS LE10 problem in the cloud for tetrahedral meshes.

Jan/18/2022 / v0.2+ / 4ddc623+€ 29/69

FeenoX Software Design Specification

Regarding storage, FeenoX needs space to store the input file (negligible), the mesh file in .msh format (which
can be either ASCII or binary) and the optional output files in .msh or .vtk formats. All of these files can be
stored gzip-compressed and un-compressed on demand by exploiting FeenoX’ script-friendliness using proper
calls to gzip before and/or after calling the feenox binary.

2.5 Scalability

The tool ought to be able to start solving small problems first to check the inputs and outputs
behave as expected and then allow increasing the problem size up in order to achieve to the desired
accuracy of the results. As mentioned in sec. 2, large problem should be split among different
computers to be able to solve them using a finite amount of per-host computational power (RAM
and CPU).

The time needed to solve a relatively large problem can be reduced by exploiting the fact that most cloud
servers (and even laptop computers) have more than one CPU available. There are some tasks that can be split
into several processors sharing a common memory address space that will scale up perfectly, such as building
the elemental matrices and assembling the global stiffness matrix. There are some other tasks that might not
scale perfectly but that nevertheless might (or might not) reduce the overall wall time if split among processors
using a common memory space, such as solving the linear system K - u = b. The usual scheme to parallelize
a problem under these conditions is to use the OpenMP framework.

Yet, if the problem is large enough, a server might not have enough physical random-access memory to be able
to handle the whole problem. The problem now has to be split among different servers which, in turn, might
have several processors each. Some of the processors share the same address space but most of them will only
have access to a fraction of the whole global problem data. In these cases, there are no tasks that can scale up
perfectly since even when building and assembling the matrices, a processor needs some piece of data which
is handled by another processor with a different address space and that has to be conveyed specifically from
one process to another one. The usual scheme to parallelize a problem under these conditions is to use the
MPI standard and one of its two most well-known implementations, either Open MPI or MPICH.

It might seem that the most effective approach to solve a large problem is to use OpenMP among threads
running in processors that share the memory address space and to use MPI among processes running in
different hosts. But even though this hybrid OpenMPI+MPI scheme is possible, there are at least three main
drawbacks with respect to a pure MPI approach:

i. the overall performance is not be significantly better
ii. the amount of lines of code that has to be maintained is more than doubled
iii. the number of possible points of synchronization failure increases

In many ways, the pure MPI mode has fewer synchronizations and thus should perform better. Hence, FeenoX
uses MPI (mainly through PETSc and SLEPc) to handle large parallel problems.

Most of the overhead of parallelized tasks come from the fact that processes need data stored in other processes
that use another memory address space. Therefore, the discretized domain has to be split among processes in
such a way as to minimize the number of inter-process communication. This problem, called domain decom-
position, can be handled either by the mesher or by the solver itself, usually using a third-part library such as

Jan/18/2022 / v0.2+ / 4ddc623+€ 30/69

https://en.wikipedia.org/wiki/OpenMP
https://en.wikipedia.org/wiki/Message_Passing_Interface
https://www.open-mpi.org/
https://www.mpich.org/

FeenoX Software Design Specification

(a) Structured grid (b) Unstructured grid

Figure 2.10: Partition of the 2D NAFEMS LE1 domain into four different sub-domains computed in Gmsh using Metis.

Metis. It should be noted that the domain decomposition problem does not have a unique solution. On the
one hand, it depends on the actual mesh being distributed over parallel processes as illustrated in fig. 2.10. On
the other hand, the optimal solution might depend on the kind of topology boundaries to minimize (shared
nodes, shared faces) and other subtle options that partitioning libraries allow.

FeenoX relies on Gmsh to perform the domain decomposition (using Metis) and to provide the partitioning
information in the mesh file read by the reap_MEsH keyword.

2.6 Flexibility

The tool should be able to handle engineering problems involving different materials with potential
spatial and time-dependent properties, such as temperature-dependent thermal expansion coeffi-
cients and/or non-constant densities. Boundary conditions must be allowed to depend on both
space and time as well, like non-uniform pressure loads and/or transient heat fluxes.

The third-system effect mentioned in sec. 2 involves almost ten years of experience in the nuclear industry,’
where complex dependencies of multiple material properties over space through intermediate distributions
(temperature, neutronic poisons, etc.) and time (control rod positions, fuel burn-up, etc.) are mandatory.

One of the cornerstone design decisions in FeenoX is that everything is an expression. Here, “everything”
means any location in the input file where a numerical value is expected. The most common use case is in the
PRINT keyword. For example, the Sophomore’s dream (in contrast to Freshman’s dream) identity

!This experience also shaped many of the features that FeenoX has and most of the features is does deliberately not have.

Jan/18/2022 / v0.2+ / 4ddc623+¢ 31/69

http://glaros.dtc.umn.edu/gkhome/metis/metis/overview
https://en.wikipedia.org/wiki/Sophomore%27s_dream
https://en.wikipedia.org/wiki/Freshman%27s_dream

FeenoX Software Design Specification

1 [ee]
/ z %dx = Z n~ "
0 n=1

can be illustrated like this:

VAR x

PRINT %.7f integral(x”~(-x),x,0,1)
VAR n

PRINT %.7f sum(n™(-n),n,1,1000)

$ feenox sophomore.fee
1.2912861

1.2912860

$

Of course most engineering problems will not need explicit integrals (a few of them do, though) but some of
them might need summation loops, so it is handy to have these functionals available inside the FEA tool. This
might seem to go against the “keep it simple” and “do one thing good” Unix principle, but definitely follows
Alan Kay’s idea that “simple things should be simple, complex things should be possible.”

Flexibility in defining non-trivial material properties is illustrated with the following example, where two non-
squares made of different dimensional materials are juxtaposed in thermal contact and subject to different
boundary conditions at each of the fours sides (fig. 2.11).

L —

N |

L —
| —
L —]
-

Figure 2.11: Two non-dimensional 1 X 1 squares each in thermal contact made of different materials.

The yellow square is made of a certain material with a conductivity that depends algebraically on the temper-
ature like

1
kyellow(xa y) = 5 + T(:Ua y)

Jan/18/2022 / v0.2+ / 4ddc623+€ 32/69

https://en.wikipedia.org/wiki/Alan_Kay

FeenoX Software Design Specification

The cyan square has a space-dependent temperature given by a table of scattered data as a function of the
spatial coordinates x and y (origin is left bottom corner of the yellow square) without any particular structure
on the definition points:

z Y kcyan(% Y)
1 0 1.0
1 1 1.5
2 0 1.3
2 1 1.8
1.5 05 1.7

The cyan square generates a temperature-dependent power density (per unit area) given by

quan(xv y) =02 T($, y)

The yellow one does not generate any power so q;’euow = 0. Boundary conditions are

T(x,y) =y at the left edge y = 0
T(z,y) =1—cos (%7‘(: x) at the bottom edge = 0
d(x,y)=2—y at the right edge © = 2

¢ (z,y) =1 at the top edge y = 1

The input file illustrate how flexible FeenoX is and, again, how the problem definition in a format that the
computer can understand resembles the humanly-written formulation of the original engineering problem:

PROBLEM thermal 2d # heat conduction in two dimensions
READ_MESH two-squares.msh

k yellow(x,y) = 1/2+T(x,y) # thermal conductivity
FUNCTION k cyan(x,y) INTERPOLATION shepard DATA {

1 [¢] 1.0

1 1 1.5

2 0 1.3

2 1 1.8

1.50.5 1.7 }
g_cyan(x,y) #

1-0.2*T(x,y) # dissipated power density

q_yellow(x,y) = 0

3

BC left T=y

BC bottom T=1-cos(pi/2*x)
BC right qg=2-y

BC top g=1

temperature (dirichlet) bc

H

heat flux (neumann) bc

SOLVE_PROBLEM
WRITE_MESH two-squares-results.msh T #CELLS k

Jan/18/2022 / v0.2+ / 4ddc623+€ 33/69

FeenoX Software Design Specification

Note that FeenoX is flexible enough to...

1. handle mixed meshes (the yellow square is meshed with triangles and the other one with quadrangles)

2. use point-wise defined properties even though there is not underlying structure nor topology for the
points where the data is defined (FeenoX could have read data from a .msh or .vtk file respecting the
underlying topology)

3. understand that the problem is non-linear so as to use PETSc’s SNES framework automatically (the
conductivity and power source depend on the temperature).

0 137 273 LY x

— L ——
(a) Temperature defined at nodes

g—\“‘k‘-‘ &
““‘%

S eeeeae

0544 138 223 A
[. BN . -

(b) Conductivity defined at cells

Figure 2.12: Temperature (main result) and conductivity for the two-squares thermal problem.

In the very same sense that variables x, y and z appearing in the input refer to the spatial coordinates x, y and z
respectively, the special variable t refers to the time ¢. The requirement of allowing time-dependent boundary
conditions can be illustrated by solving the NAFEMS T3 one-dimensional transient heat transfer benchmark.

Jan/18/2022 / v0.2+ / 4ddc623+¢ 34/69

FeenoX Software Design Specification

It consists of a slab of 0.1 meters long subject to a fixed homogeneous temperature on one side, i.e.

T(z=0)=0°C

and to a transient temperature

m-t
T(r=0.1m,¢) =100°C-sin [—
(z m,) s1n(40 >

at the other side. There is zero internal heat generation, at £ = 0 all temperature is equal to 0°C (sic) and
conductivity, specific heat and density are constant and uniform. The problem asks for the temperature at
location z = 0.08 m at time ¢ = 32 s. The reference result is 7(0.08 m, 32 s) = 36.60 °C.

PROBLEM heat DIM 1 # NAFEMS-T3 benchmark: 1d transient heat conduction
READ_MESH slab-0.1m.msh

end_time = 32 # transient up to 32 seconds
T 0(x) =0 # initial condition “all temperature is equal to 0°C”

prescribed temperatures as boundary conditions
BC left T=0
BC right T=100*sin(pi*t/40)

uniform and constant properties

k = 35.0 # conductivity W/ (mK)]
cp = 440.5 # heat capacity [J/(kg K)]
rho = 7200 # density [kg/m"3]

SOLVE_PROBLEM

print detailed evolution into an ASCII file
PRINT FILE nafems-t3.dat %.3f t dt %.2f T(0.05) T(0.08) T(0.1)

print the asked result into the standard output
IF done

PRINT "T(0.08m,32s) = " T(0.08) "eC"

ENDIF

$ gmsh -1 slab-0.1m.geo

loool

Info : Done meshing 1D (Wall 0.000213023s, CPU 0.000836s)
Info : 61 nodes 62 elements

Info : Writing 'slab-0.1m.msh'...

Info : Done writing 'slab-0.1m.msh'

Info : Stopped on Sun Dec 12 19:41:18 2021 (From start: Wall 0.00293443s, CPU 0.02605s)
$ feenox nafems-t3.fee

T(0.08m,32s) = 36.5996 °C

$ pyxplot nafems-t3.ppl

$

Jan/18/2022 / v0.2+ / 4ddc623+€ 35/69

FeenoX Software Design Specification

— T(x=0.06 m,t) —+ T(z=0.08m,t) —~ T(z=0.10m,t)

Temperature T [C]

Time t [seconds]

Figure 2.13: Temperature vs. time at three axial locations for the NAFEMS T3 benchmark

Besides “everything is an expression,” FeenoX follows another cornerstone rule: simple problems ought to
have simple inputs, akin to Unix’ rule of simplicity—that addresses the first half of Alan Kay’s quote above.
This rule is further discussed in sec. 3.1.

2.7 Extensibility

It should be possible to add other PDE-casted problem types (such as the Schréedinger equation) to
the tool using a reasonable amount of time by one or more skilled programmers. The tool should
also allow new models (such as non-linear stress-strain constitutive relationships) to be added as
well.

Even though FeenoX is written in C, it makes extensive use of function pointers to mimic C++’s virtual meth-
ods. This way, depending on the problem type given with the proBLEM keyword, particular routines are called
to

1. initialize and set up solver options (steady-state/transient, linear/non-linear, regular/eigenproblem, etc.)
2. parse boundary conditions given in the Bc keyword
3. build elemental contributions for
a. volumetric stiffness and/or mass matrices
b. natural boundary conditions
4. compute secondary fields (heat fluxes, strains and stresses, etc.) out of the gradients of the primary

fields

5. compute per-problem key performance indicators (min/max temperature, displacement, stress, etc.)

Jan/18/2022 / v0.2+ / 4ddc623+€ 36/69

FeenoX Software Design Specification

6. write particular post-processing outputs
Indeed, each of the supported problems, namely

e laplace

e thermal

e mechanical
e modal

e neutron diffusion

is a separate directory under src/pdes that implements these “virtual” methods that are resolved at runtime
when parsing the main input file. Additional elliptic problems can be added by using the 1aptlace directory as
a template while using the other directories as examples about how to add further features (e.g. a Robin-type
boundary condition in thermal and a vector-valued unknown in mechanicat).

As already discussed in sec. 1, FeenoX is free-as-in-freedom software licensed under the terms of the GNU
General Public License version 3 or, at the user convenience, any later version. In the particular case of
additional problem types, this fact has two implications.

i. Every person in the world is free to modify FeenoX to suit their needs, including adding a new problem
type either using one of the existing ones as a template or by creating a new directory from scratch,
without asking anybody of any kind of permission. In case this person does not how to program, he or
she has the freedom to hire somebody else to do it. This is the sense of the word “free” in the compound
phrase “free software:” freedom to do what they think fit (except to make it non-free, see next bullet).

ii. The authors own the copyright of the additional code. Yet, if they want to distribute the modified version
they have to do it under also under the terms of the GPLv3+ and under a name that does not induce
the users to think the modified version is the original FeenoX distribution.? That is to say, free software
ought to remain free.

Regarding additional material models, the virtual methods that compute the elemental contributions to the
stiffness matrix also use function pointers to different material models (linear isotropic elastic, orthotropic,
etc.) that are resolved at run time. Following the same principle, new models might be added by adding new
routines and resolving them depending on the user’s input.

2.8 Interoperability

A mean of exchanging data with other computational tools complying to requirements similar to
the ones outlined in this document. This includes pre and post-processors but also other computa-
tional programs so that coupled calculations can be eventually performed by efficiently exchanging
information between calculation codes.

Sec. 1.2 already introduced the ideas about interoperability behind the Unix philosophy which make up for
most the the FeenoX design basis. Essentially, they sum up to “do only one thing but do it well.” Since FeenoX
is filter (or a transfer-function), interoperability is a must. So far, this SDS has already shown examples of
exchanging information with:

2Even better, these authors should ask to merge their contributions into FeenoX’ main code base.

Jan/18/2022 / v0.2+ / 4ddc623+€ 37/69

https://github.com/seamplex/feenox/tree/main/src/pdes/laplace
https://github.com/seamplex/feenox/tree/main/src/pdes/thermal
https://github.com/seamplex/feenox/tree/main/src/pdes/mechanical
https://github.com/seamplex/feenox/tree/main/src/pdes/modal
https://github.com/seamplex/feenox/tree/main/src/pdes/neutron_difussion
https://github.com/seamplex/feenox/tree/main/src/pdes
https://www.gnu.org/licenses/gpl-3.0
https://www.gnu.org/licenses/gpl-3.0

FeenoX Software Design Specification

+ Kate (with syntax highlighting): fig. 1.2
« Gmsh (both as a mesher and a post-processor): figs. 2.3, 2.4, 2.5, 2.7, 2.10, 2.11, 2.12

« Paraview: fig. 1.3
« Gnuplot: figs. 1.1, 2

« Pyxplot: figs. 2.6, 2.

9
8,213

To illustrate both the filter approach, consider the following input file that solves Laplace’s equation VZ¢ = 0
on a square with some space-dependent boundary conditions. Either Gmsh or Paraview can be used to post-
process the results:

o(x,y) = +y for x = —1 (left)
o(x,y) = —y for x = +1 (right)
V¢ - =sin(§-z) fory= —1 (bottom)
Vo -0=0 for y = +1 (top)

PROBLEM laplace 2d
READ_MESH square-centered.msh # [—1:+1[x[-1:+1]

boundary conditions

BC left phi=+y
BC right phi=-y
BC bottom
BC top dphidn=0

SOLVE_PROBLEM

same output in .msh and

dphidn=sin(pi/2*x)

in .vtk formats

WRITE_MESH laplace-square.msh phi VECTOR dphidx dphidy 0
WRITE_MESH laplace-square.vtk phi VECTOR dphidx dphidy 0

A great deal of FeenoX interoperability capabilities comes from another design decision: output is 100% con-
trolled by the user (further discussed in sec. 3.2), a.k.a. “no PRINT, no OUTPUT” whose corollary is the UNIX
rule of silence. The following input file computes the natural frequencies of oscillation of a cantilevered wire
both using the Euler-Bernoulli theory and finite elements. It writes a GFM table into the standard output
which is then piped to Pandoc and then converted to HTML:

H* W kR

o~ i

E

compute the first five

natural modes of a cantilever wire

see https://www.seamplex.com/fino/doc/alambre. pdf (in Spanish)
(note that there is a systematic error of a factor of two in the measured values)
see https://www.seamplex.com/feenox/examples for a slighly more complex example

wire geometry
= 0.5%303e-3 # [m |
1.948e-3 #[m]

material properties for

mass = 0.5*%8.02e-3
volume = pi*(0.5*%d)"2*1
rho = mass/volume

= 2%66.2e9

nu =0

cantilever length
diameter

copper
[kg] total mass (half the measured because of the experimental disposition)

[kg / m"3 | density = mass (measured) / volume
[Pa | Young modulus (twice because the factor-two error)
"Poissons ratio (does not appear in Euler-Bernoulli)

H# W I

Jan/18/2022 / v0.2+ / 4ddc623+¢

38/69

https://kate-editor.org/
http://gmsh.info/
https://www.paraview.org/
http://gnuplot.info/
http://www.pyxplot.org.uk/
https://github.github.com/gfm/#tables-extension-
https://pandoc.org/

FeenoX Software Design Specification

N

Ul
i,
A
omn
LS

<

5

-1.0e+00 05 0 0.5 1.0e+00

(a) Post-processed with Gmsh (b) Post-processed with Paraview

Figure 2.14: Laplace’s equation solved with FeenoX

compute analytical solution

first compute the first five roots ok cosh(kl)+cos(kl)+1
VECTOR kl[5]

kl1[i] = root(cosh(t)*cos(t)+1l, t, 3*i-2,3*i+l)

then compute the frequencies according to Euler-Bernoulli
note that we need to use SI inside the square root

A= pi * (d/2)™2

I =pi/4 * (d/2)"4

VECTOR f_euler[5]
f euler[i] = 1/(2*pi) * kl(i)"2 * sqrt((E * I)/(rho * A * 174))

now compute the modes numerically with FEM

note that each mode is duplicated as it is degenerated
PROBLEM modal 3D MODES 10

READ_MESH wire-hex.msh

BC fixed fixed

SOLVE_PROBLEM

write a github—formatted markdown table comparing the frequencies

PRINT " \$n\$ | FEM | Euler | Relative difference [%]"

PRINT ":----:i4+i------ e R LR T LT g%

PRINT_VECTOR SEP " | " %g i1 %.4g f(2*i-1) f_euler %.2f 100*(f_euler(i)-f(2*i-1))/f euler(i)
PRINT

PRINT ":

Comparison of analytical and numerical frequencies, in Hz"

Jan/18/2022 / v6.2+ / 4ddc623+e 39/69

FeenoX Software Design Specification

$ gmsh -3 wire-hex.geo

.1

[..

$ $ feenox wire.fee | pandoc
<table>
<caption>Comparison of analytical and numerical frequencies, in Hz</caption>
<thead>

<tr
<th
<th
<th
<th

class="header">

style="text-align:
style="text-align:
style="text-align:
style="text-align:

</tr>
</thead>
<tbody>

<tr
<td
<td
<td
<td

class="odd">

style="text-align:
style="text-align:
style="text-align:
style="text-align:

</tr>

<tr
<td
<td
<td
<td

class="even">

style="text-align:
style="text-align:
style="text-align:
style="text-align:

</tr>

<tr
<td
<td
<td
<td

class="odd">

style="text-align:
style="text-align:
style="text-align:
style="text-align:

i Aded

<tr
<td
<td
<td
<td

class="even">

style="text-align:
style="text-align:
style="text-align:
style="text-align:

</tr>

<tr
<td
<td
<td
<td

class="odd">

style="text-align:
style="text-align:
style="text-align:
style="text-align:

</tr>
</tbody>
</table>

$

Of course these kind of FeenoX-generated tables can be inserted verbatim into Markdown documents (just
like this one) and rendered as tbl. 2.2.

center;">n</th>
center; ">FEM</th>

center; ">Euler</th>

center;">Relative difference [%]</th>

center;">1</td>

center; ">45.84</td>
center;">45.84</td>
center;">0.02</td>

center; ">2</td>

center;">287.1</td>
center;">287.3</td>
center;">0.06</td>

center; ">3</td>

center;">803.4</td>
center;">804.5</td>
center;">0.13</td>

center; ">4</td>

center;">1573</td>
center;">1576</td>
center;">0.24</td>

center; ">5</td>

center; ">2596</td>
center;">2606</td>
center;">0.38</td>

Jan/18/2022 / v0.2+ / 4ddc623+¢

FeenoX Software Design Specification

« UNIX

« POSIX

o shmem

« mpi

« moustache

Table 2.2: Comparison of analytical and numerical frequencies, in Hz

n FEM Euler Relative difference [%]
1 45.84 45.84 0.02
2 2871 2873 0.06
3 803.4 804.5 0.13
4 1573 1576 0.24
5 2596 2606 0.38

It should be noted that all of the programs and tools mentioned to be interoperable with FeenoX are free and

open source software.

Jan/18/2022 / v0.2+ / 4ddc623+¢

41/69

FeenoX Software Design Specification

Max.
Applied | Applied M+B Total Metal
Cycles | Cycles | STRESS Stress St Temp. DO
Pair A | Pair B A B (psi) K. (psi) (psi) N, n, U, (°F) (ppm)
694 447 5 20 | 125542.9 | 2.580 | 144164.4 | 220490.4 140.005 5| 0.0357 566.6 | 0.150
699 447 50 15| 121622.8 | 2.405 | 139047.0 | 198300.6 178.958 15| 0.0838 566.6 | 0.550
699 1021 35 20 | 104691.5 | 1.653 | 126037.5 | 124507.0 582.468 20| 0.0343 600.4 | 0.550
699 899 15 50 | 89695.4 | 1.000 | 102302.8 | 57864.5 6339.47 15| 0.0024 336.1 | 0.550
695 899 5 35| 84993.9| 1.000 | 98798.6| 55882.4 7027.83 5| 0.0007 336.1 | 0.550
185 899 20 30 | 68222.2|1.000 | 76465.1| 43250.2 15549.1 20| 0.0013 336.1| 0.550
1432 899 20 10 | 66665.7 | 1.000 | 83098.8 | 47002.3 11892.7 10 | 0.0008 336.1 | 0.550
1432 1653 10 100 | 49437.0 | 1.000 | 61950.9 | 33687.5 35734.8 10 | 0.0003 103.0 | 0.522
1296 1653 20 90 | 32478.6| 1.000 | 38719.1| 22025.4 154852 20| 0.0001 366.2 | 0.522
1136 1653 20 70 | 27045.6| 1.000 | 33751.1| 19388.7 258499 20| 0.0001 417.7 | 0.522
2215 1653 100 50 | 25255.9| 1.000 | 25668.1| 15147.6| 1.15E+06 50 | 0.0000 547.0 | 0.522
2215 1213 50 20 | 22343.7|1.000 | 25298.3| 14929.4| 1.30E+06 20| 0.0000 547.0 | 0.050
2215 1562 30 20 | 22047.7|1.000 | 24970.1| 14735.7| 1.46E+06 20| 0.0000 547.0 | 0.050
2215 1 10 20 | 11956.0| 1.000 | 12255.6 7232.5| 1.00E+M1 10 | 0.0000 547.0 | 0.150
1347 1 20 10 3786.5 | 1.000 4173.0 2412.1 1.00E+11 10 | 0.0000 450.0 [0.150
1347 1595 10 20 3408.0 | 1.000 3430.2 1963.3 1.00E+11 10 | 0.0000 398.7 | 0.050
960 1595 20 10 241.8 | 1.000 259.9 146.0 | 1.00E+11 10 | 0.0000 299.5 | 0.050
960 960 5 5 0.0] 1.000 0.0 0.0] 1.00E+11 10 | 0.0000 299.5 | 0.050
TOTAL CUF = 0.1596

(a) A multi-billion-dollar agency using the Windows philosophy (presumably mouse-based copy and paste into Word)

} Aj Bj n.(‘llj) n(BJ,) NlB; [kSl] ke“,‘ S_; [kSl] Salt‘j [kSl] J\"YJ‘ nj UJ, Tmax,j ["F]
1 447 694 20 5 125.5 2.580 1442 220.400 1.40 x 10? 5 3.57 x 1072 566.6
2 447 699 15 50 121.6 2.405 139 198.300 1.79 x 10° 15 8.38 x 1072 566.6
3 699 1020 35 20 104.7 1.653 126.5 124900 5.77 x 102 20 3.47 x 1072 599.2
4 699 899 15 50 89.7 1.000 102.3 62.640 5.02 x 10° 15 2.99 x 1073 336.1
5 695 899 5 35 84.99 1.000 98.8 59.750 5.77 x 10° 5 867x10% 336.1
6 899 1432 30 20 66.67 1.000 83.1 50.360 9.56 x 10° 20 2.09 x 1073 634.2
7 184 899 20 10 68.23 1.000 76.76 46.440 1.24 x 10* 10 8.09 x 10=* 600.0
8 184 1641 10 100 51.22 1.000 55.83 33.630 3.59 x 10* 10 2.78 x 107% 634.2
9 1296 1641 20 90 32.69 1.000 38.94 22.110 1.53 x 10° 20 131 x107% 366.2
10 1134 1641 20 70 27.31 1.000 34,49 19.800 2.34 x 10° 20 853 x 1077 419.2
11 1641 2215 50 100 25.47 1.000 25.89 15.270 1.07 x 10° 50 4.66 x 107> 547.0
12 1213 2215 20 50 22.34 1.000 25.3 14930 1.31x10° 20 1.53 x 107° 547.0
13 1630 2215 100 30 24.88 1.000 25.2 14.870 1.35x 10° 30 2.22x 107 547.0
14 1347 1630 20 70 16.71 1.000 17.12 9798 3.72x10° 20 538x 1077 3987
15 960 1630 20 50 13.54 1.000 13.95 8.405 7.76 x 10 20 258 x 107" 6342
16 1595 1630 20 30 13.3 1.000 13.69 7.690 1.00 x 10" 20 2.00x 1071 2994
17 1 1630 20 10 12.92 1.000 12.95 7469 1.00 x 101 10 1.00 x 1071 450.0
18 1 1596 10 100 12.92 1.000 12.95 7.469 1.00 x 10'7 10 1.00 x 107 450.0
19 1562 1596 20 90 2.829 1.000 0.2345 0.132 1.00 x 10 20 2.00 x 1071* 2994
CUF total = 0.1615
(b) A small third-world consulting company using the Unix philosophy (FeenoX+AWK+LaTeX)
Figure 2.15: Results of the same fatigue problem solved using two different philosophies.
Jan/18/2022 / v0.2+ / 4ddc623+€ 42/69

Chapter 3

Interfaces

3.1

The tool should be able to allow remote execution without any user intervention after the tool is
launched. To achieve this goal it is that the problem should be completely defined in one or more
input files and the output should be complete and useful after the tool finishes its execution, as
already required. The tool should be able to report the status of the execution (i.e. progress, errors,
etc.) and to make this information available to the user or process that launched the execution,
possibly from a remote location.

Problem input
The problem should be completely defined by one or more input files. These input files might be

« particularly formatted files to be read by the tool in an ad-hoc way, and/or

« source files for interpreted languages which can call the tool through and API or equivalent
method, and/or

« any other method that can fulfill the requirements described so far.

Preferably, these input files should be plain ASCII file in order to be tracked by distributed control
version systems such as Git. If the tool provides an API for an interpreted language such as Python,
the Python source used to solve a particular problem should be Git-friendly. It is recommended
not to track revisions of mesh data files but of the source input files, i.e. to track the mesher’s input
and not the mesher’s output. Therefore, it is recommended not to mix the problem definition with
the problem mesh data.

It is not mandatory to include a GUI in the main distribution, but the input/output scheme should
be such that graphical pre and post-processing tools can create the input files and read the output
files so as to allow third parties to develop interfaces. It is recommended to design the workflow
as to make it possible for the interfaces to be accessible from mobile devices and web browsers.

It is acceptable if only basic usage can be achieved through the usage of graphical interfaces to ease
basic usage at least. Complex problems involving non-trivial material properties and boundary
conditions might Notwithstanding the suggestion above, it is expected that

Jan/18/2022 / 4ddc623+€

FeenoX Software Design Specification

dar ejemplos comparar con https://cofea.readthedocs.io/en/latest/benchmarks/004-eliptic-
membrane/tested- codes.html

macro-friendly inputs, rule of generation

Simple problems should need simple inputs.

English-like input. Nouns are definitions, verbs are instructions.
Similar problems should need similar inputs.

thermal slab steady state and transient

1d neutron

VCS tracking, example with hello world.

APLin C?

3.2 Results output

The output ought to contain useful results and should not be cluttered up with non-mandatory
information such as ASCII art, notices, explanations or copyright notices. Since the time of cog-
nizant engineers is far more expensive than CPU time, output should be easily interpreted by either
a human or, even better, by other programs or interfaces—especially those based in mobile and/or
web platforms. Open-source formats and standards should be preferred over privative and ad-hoc
formatting to encourage the possibility of using different workflows and/or interfaces.

JSON/YAML, state of the art open post-processing formats. Mobile & web-friendly.
Common and preferably open-source formats.

100% user-defined output with PRINT, rule of silence rule of economy, i.e. no RELAP yaml/json friendly outputs
vtk (vtu), gmsh, frd?

90% is serial (vtk), no need to complicate due to 10%

Jan/18/2022 / v0.2+ / 4ddc623+€ 44/69

https://cofea.readthedocs.io/en/latest/benchmarks/004-eliptic-membrane/tested-codes.html
https://cofea.readthedocs.io/en/latest/benchmarks/004-eliptic-membrane/tested-codes.html

Chapter 4

Quality assurance

41

Since the results obtained with the tool might be used in verifying existing equipment or in design-
ing new mechanical parts in sensitive industries, a certain level of software quality assurance is
needed. Not only are best-practices for developing generic software such as

« employment of a version control system,
« automated testing suites,

« user-reported bug tracking support.
 etc.

required, but also since the tool falls in the category of engineering computational software, veri-
fication and validation procedures are also mandatory, as discussed below. Design should be such
that governance of engineering data including problem definition, results and documentation can
be efficiently performed using state-of-the-art methodologies, such as distributed control version
systems

Reproducibility and traceability

The full source code and the documentation of the tool ought to be maintained under a control
version system. Whether access to the repository is public or not is up to the vendor, as long as
the copying conditions are compatible with the definitions of both free and open source software
from the FSF and the OS], respectively as required in sec. 1.

In order to be able to track results obtained with different version of the tools, there should be a
clear release procedure. There should be periodical releases of stable versions that are required

« not to raise any warnings when compiled using modern versions of common compilers
(e.g. GNU, Clang, Intel, etc.)

« not to raise any errors when assessed with dynamic memory analysis tools (e.g. Valgrind)
for a wide variety of test cases

« to pass all the automated test suites as specified in sec. 4.2

Jan/18/2022 / 4ddc623+€

FeenoX Software Design Specification

These stable releases should follow a common versioning scheme, and either the tarballs with
the sources and/or the version control system commits should be digitally signed by a cognizant
responsible. Other unstable versions with partial and/or limited features might be released either
in the form of tarballs or made available in a code repository. The requirement is that unstable
tarballs and main (a.k.a. trunk) branches on the repositories have to be compilable. Any feature
that does not work as expected or that does not even compile has to be committed into develop
branches before being merge into trunk.

If the tool has an executable binary, it should be able to report which version of the code the
executable corresponds to. If there is a library callable through an API, there should be a call
which returns the version of the code the library corresponds to.

It is recommended not to mix mesh data like nodes and element definition with problem data like
material properties and boundary conditions so as to ease governance and tracking of computa-
tional models and the results associated with them. All the information needed to solve a particular
problem (i.e. meshes, boundary conditions, spatially-distributed material properties, etc.) should
be generated from a very simple set of files which ought to be susceptible of being tracked with
current state-of-the-art version control systems. In order to comply with this suggestion, ASCII
formats should be favored when possible.

simple <-> simple

similar <-> Similar

4.2 Automated testing

A mean to automatically test the code works as expected is mandatory. A set of problems with
known solutions should be solved with the tool after each modification of the code to make sure
these changes still give the right answers for the right questions and no regressions are introduced.
Unit software testing practices like continuous integration and test coverage are recommended but
not mandatory.

The tests contained in the test suite should be

« varied,
« diverse, and
« independent

Due to efficiency issues, there can be different sets of tests (e.g. unit and integration tests, quick
and thorough tests, etc.) Development versions stored in non-main branches can have temporarily-
failing tests, but stable versions have to pass all the test suites.

make check

regressions, example of the change of a sign

4.3 Bug reporting and tracking

Jan/18/2022 / v0.2+ / 4ddc623+€ 46/69

FeenoX Software Design Specification

A system to allow developers and users to report bugs and errors and to suggest improvements
should be provided. If applicable, bug reports should be tracked, addressed and documented. User-
provided suggestions might go into the back log or TO-DO list if appropriate.

Here, “bug and errors” mean failure to

« compile on supported architectures,
- run (unxepected run-time errors, segmentation faults, etc.)
« return a correct result

github

mailing listings

4.4 Verification

Verification, defined as
The process of determining that a model implementation accurately represents the de-
veloper’s conceptual description of the model and the solution to the model.

i.e. checking if the tool is solving right the equations, should be performed before applying the
code to solve any industrial problem. Depending on the nature and regulation of the industry, the
verification guidelines and requirements may vary. Since it is expected that code verification tasks
could be performed by arbitrary individuals or organizations not necessarily affiliated with the tool
vendor, the source code should be available to independent third parties. In this regard, changes
in the source code should be controllable, traceable and well documented.

Even though the verification requirements may vary among problem types, industries and partic-
ular applications, a common method to verify the code is to compare solutions obtained with the
tool with known exact solutions or benchmarks. It is thus mandatory to be able to compare the
results with analytical solutions, either internally in the tool or through external libraries or tools.
This approach is called the Method of Exact Solutions and it is the most widespread scheme for
verifying computational software, although it does not provide a comprehensive method to ver-
ify the whole spectrum of features. In any case, the tool’s output should be susceptible of being
post-processed and analysed in such a way to be able to determine the order of convergence of the
numerical solution as compared to the exact one.

Another possibility is to follow the Method of Manufactured Solutions, which does address all
the shortcomings of MES. It is highly encouraged that the tool allows the application of MMS for
software verification. Indeed, this method needs a full explanation of the equations solved by the
tool, up to the point that [@sandia-mms] says that
Difficulties in determination of the governing equations arises frequently with com-
mercial software, where some information is regarded as proprietary. If the governing
equations cannot be determined, we would question the validity of using the code.

To enforce the availability of the governing equations, the tool has to be open source as required

Jan/18/2022 / v0.2+ / 4ddc623+€ 47/69

FeenoX Software Design Specification

in sec. 1 and well documented as required in sec. 4.6.

A report following either the MES and/or MMS procedures has to be prepared for each type of
equation that the tool can solve. The report should show how the numerical results converge to
the exact or manufactured results with respect to the mesh size or number of degrees of freedom.
This rate should then be compared to the theoretical expected order.

Whenever a verification task is performed and documented, at least one of the cases should be
added to the test suite. Even though the verification report must contain a parametric mesh study,
a single-mesh case is enough to be added to the test suite. The objective of the tests defined in
sec. 4.2 is to be able to detect regressions which might have been inadvertently introduced in the
code and not to do any actual verification. Therefore a single-mesh case is enough for the test
suites.

open source (really, not like CCX -> mostrar ejemplo) GPLv3+ free Git + gitlab, github, bitbucket

4.5 Validation

As with verification, for each industrial application of the tool there should be a documented pro-
cedure to perform a set of validation tests, defined as

The process of determining the degree to which a model is an accurate representation
of the real world from the perspective of the intended uses of the model.

i.e. checking that the right equations are being solved by the tool. This procedure should be based
on existing industry standards regarding verification and validation such as ASME, ATAA, IAEA,
etc. There should be a procedure for each type of physical problem (thermal, mechanical, thermo-
mechanical, nuclear, etc.) and for each problem type when a new

» geometry,

« mesh type,

« material model,
 boundary condition,

« data interpolation scheme

or any other particular application-dependent feature is needed.

A report following the validation procedure defined above should be prepared and signed by a
responsible engineer in a case-by-case basis for each particular field of application of the tool.
Verification can be performed against

« known analytical results, and/or
« other already-validated tools following the same standards, and/or
+ experimental results.

already done for Fino

hip implant, 120+ pages, ASME, cases of increasing complexity

Jan/18/2022 / v0.2+ / 4ddc623+€ 48/69

FeenoX Software Design Specification

4.6 Documentation

Documentation should be complete and cover both the user and the developer point of view. It
should include a user manual adequate for both reference and tutorial purposes. Other forms of
simplified documentation such as quick reference cards or video tutorials are not mandatory but
highly recommended. Since the tool should be extendable (sec. 2.7), there should be a separate
development manual covering the programming design and implementation, explaining how to
extend the code and how to add new features. Also, as non-trivial mathematics which should be
verified (sec. 4.4) are expected, a thorough explanation of what equations are taken into account
and how they are solved is required.

It should be possible to make the full documentation available online in a way that it can be both
printed in hard copy and accessed easily from a mobile device. Users modifying the tool to suit
their own needs should be able to modify the associated documentation as well, so a clear notice
about the licensing terms of the documentation itself (which might be different from the licensing
terms of the source code itself) is mandatory. Tracking changes in the documentation should be
similar to tracking changes in the code base. Each individual document ought to explicitly state
to which version of the tool applies. Plain ASCII formats should be preferred. It is forbidden to
submit documentation in a non-free format.

The documentation shall also include procedures for

« reporting errors and bugs
« releasing stable versions
« performing verification and validation studies
« contributing to the code base, including
— code of conduct
— coding styles
— variable and function naming convections

it’s not compact, but almost! Compactness is the property that a design can fit inside a human being’s head.
A good practical test for compactness is this: Does an experienced user normally need a manual? If not, then
the design (or at least the subset of it that covers normal use) is compact. unix man page markdown + pandoc
= html, pdf, texinfo

Jan/18/2022 / v0.2+ / 4ddc623+€ 49/69

Appendix A

Appendix: Downloading and compiling
FeenoX

A.1 Binary executables

Browse to https://www.seamplex.com/feenox/dist/ and check what the latest version for your architecture
is. Then do

wget https://www.seamplex.com/feenox/dist/linux/feenox-v0.1.59-gbf85679-1inux-amd64.tar.gz

tar xvzf feenox-v0.1.59-gbf85679-1linux-amd64.tar.gz

You’ll have the binary under bin and examples, documentation, manpage, etc under share. Copy bin/feenox into
somewhere in the paTH and that will be it. If you are root, do

|
sudo cp feenox-v0.1.59-gbf85679-1inux-amd64/bin/feenox /usr/local/bin

If you are not root, the usual way is to create a directory sHome/bin and add it to your local path. If you have
not done it already, do

|
mkdir -p $HOME/bin

echo 'expot PATH=$PATH:$HOME/bin' >> .bashrc

Then finally copy bin/feenox to $HOME/bin

|
cp feenox-v0.1.59-gbf85679-1inux-amd64/bin/feenox $HOME/bin

Check if it works by calling feenox from any directory (you might need to open a new terminal so .bashrc is
re-read):

|
$ feenox

FeenoX v0.1.67-g8899dfd-dirty
a free no-fee no-X uniX-like finite-element(ish) computational engineering tool

Jan/18/2022 / 4ddc623+€

https://www.seamplex.com/feenox/dist/

FeenoX Software Design Specification

usage: feenox [options] inputfile [replacement arguments]

-h, --help display usage and commmand-line help and exit
--version display brief version information and exit
--versions display detailed version information
--sumarize list all symbols in the input file and exit

Instructions will be read from standard input if “”- is passed as
inputfile, i.e.

$ echo "PRINT 2+2" | feenox -
4

Report bugs at https://github.com/seamplex/feenox or to jeremy@seamplex.com
Feenox home page: https://www.seamplex.com/feenox/

$

A.2 Source tarballs

To compile the source tarball, proceed as follows. This procedure does not need git nor autoconf but a new
tarball has to be downloaded each time there is a new FeenoX version.

1. Install mandatory dependencies

|
sudo apt-get install gcc make libgsl-dev
|

If you cannot install 1ibgst-dev, you can have the configure script to download and compile it for you. See
point 4 below.

2. Install optional dependencies (of course these are optional but recommended)

|
sudo apt-get install libsundials-dev petsc-dev slepc-dev

3. Download and uncompress FeenoX source tarball. Browse to https://www.seamplex.com/feenox/di
st/src/ and pick the latest version:

|
wget https://www.seamplex.com/feenox/dist/src/feenox-v0.1.66-glc4bl7b.tar.gz

tar xvzf feenox-v0.1.66-glc4bl7b.tar.gz

4. Configure, compile & make

|
cd feenox-v0.1.66-glc4b17b

./configure

make -j4

If you cannot (or do not want) to use libgsl-dev from a package repository, call configure with --enable «
-download-gsl:

Jan/18/2022 / v0.2+ / 4ddc623+€ 51/69

https://www.seamplex.com/feenox/dist/src/
https://www.seamplex.com/feenox/dist/src/

FeenoX Software Design Specification

./configure --enable-download-gsl

If you do not have Internet access, get the tarball manually, copy it to the same directory as configure
and run again.

5. Run test suite (optional)

make check

6. Install the binary system wide (optional)

sudo make install

A.3 Git repository

To compile the Git repository, proceed as follows. This procedure does need git and autoconf but new versions
can be pulled and recompiled easily.

1. Install mandatory dependencies

sudo apt-get install gcc make git automake autoconf libgsl-dev

If you cannot install 1ibgsi-dev but still have git and the build toolchain, you can have the configure script
to download and compile it for you. See point 4 below.

2. Install optional dependencies (of course these are optional but recommended)

sudo apt-get install libsundials-dev petsc-dev slepc-dev

3. Clone Github repository

git clone https://github.com/seamplex/feenox

4. Boostrap, configure, compile & make

cd feenox
./autogen.sh

./configure
make -j4

If you cannot (or do not want) to use libgsl-dev from a package repository, call configure with --enable +
-download-gsl:

./configure --enable-download-gsl

If you do not have Internet access, get the tarball manually, copy it to the same directory as configure
and run again.

Jan/18/2022 / v0.2+ / 4ddc623+€ 52/69

FeenoX Software Design Specification

5. Run test suite (optional)

|
lIHHHHlIii%HHII

6. Install the binary system wide (optional)

|
sudo make install
|

To stay up to date, pull and then autogen, configure and make (and optionally install):

|
git pull

./autogen.sh; ./configure; make -j4
sudo make install

Jan/18/2022 / v0.2+ / 4ddc623+€ 53/69

Appendix B

Appendix: Rules of UNIX philosophy

B.1

B.2

B.3

Rule of Modularity

Developers should build a program out of simple parts connected by well defined interfaces, so
problems are local, and parts of the program can be replaced in future versions to support new
features. This rule aims to save time on debugging code that is complex, long, and unreadable.

FeenoX uses third-party high-quality libraries
— GNU Scientific Library
— SUNDIALS
- PETSc
- SLEPc

Rule of Clarity

Developers should write programs as if the most important communication is to the developer
who will read and maintain the program, rather than the computer. This rule aims to make code
as readable and comprehensible as possible for whoever works on the code in the future.

Example two squares in thermal contact.
LE10 & LE11: a one-to-one correspondence between the problem text and the FeenoX input.

Rule of Composition

Developers should write programs that can communicate easily with other programs. This rule
aims to allow developers to break down projects into small, simple programs rather than overly
complex monolithic programs.

FeenoX uses meshes created by a separate mesher (i.e. Gmsh).
FeenoX writes data that has to be plotted or post-processed by other tools (Gnuplot, Gmsh, Paraview,
etc.).

Jan/18/2022 / 4ddc623+€

FeenoX Software Design Specification

« ASCII output is 100% controlled by the user so it can be tailored to suit any other programs’ input needs
such as AWK filters to create LaTeX tables.

B.4 Rule of Separation

Developers should separate the mechanisms of the programs from the policies of the programs;
one method is to divide a program into a front-end interface and a back-end engine with which
that interface communicates. This rule aims to prevent bug introduction by allowing policies to be
changed with minimum likelihood of destabilizing operational mechanisms.

FeenoX does not include a GUI, but it is GUI-friendly.

B.5 Rule of Simplicity

Developers should design for simplicity by looking for ways to break up program systems into
small, straightforward cooperating pieces. This rule aims to discourage developers’ affection for
writing “intricate and beautiful complexities” that are in reality bug prone programs.

Simple problems need simple input.

Similar problems need similar inputs.
English-like self-evident input files matching as close as possible the problem text.
« If there is a single material there is no need to link volumes to properties.

B.6 Rule of Parsimony

Developers should avoid writing big programs. This rule aims to prevent overinvestment of devel-
opment time in failed or suboptimal approaches caused by the owners of the program’s reluctance
to throw away visibly large pieces of work. Smaller programs are not only easier to write, optimize,
and maintain; they are easier to delete when deprecated.

« Parametric and/or optimization runs have to be driven from an outer script (Bash, Python, etc.)

B.7 Rule of Transparency

Developers should design for visibility and discoverability by writing in a way that their thought
process can lucidly be seen by future developers working on the project and using input and output
formats that make it easy to identify valid input and correct output. This rule aims to reduce
debugging time and extend the lifespan of programs.

+ Written in C99

« Makes use of structures and function pointers to give the same functionality as C++’s virtual methods
without needing to introduce other complexities that make the code base harder to maintain and to
debug.

Jan/18/2022 / v0.2+ / 4ddc623+€ 55/69

FeenoX Software Design Specification

B.8 Rule of Robustness

Developers should design robust programs by designing for transparency and discoverability, be-
cause code that is easy to understand is easier to stress test for unexpected conditions that may
not be foreseeable in complex programs. This rule aims to help developers build robust, reliable
products.

B.9 Rule of Representation

Developers should choose to make data more complicated rather than the procedural logic of the
program when faced with the choice, because it is easier for humans to understand complex data
compared with complex logic. This rule aims to make programs more readable for any developer
working on the project, which allows the program to be maintained.

B.10 Rule of Least Surprise

Developers should design programs that build on top of the potential users’ expected knowledge;
for example, ‘+” in a calculator program should always mean ‘addition’. This rule aims to encourage
developers to build intuitive products that are easy to use.

« If one needs a problem where the conductivity depends on x as k(x) = 1 + x then the input is

’k(x) = 1+x ‘

« Ifaproblem needs a temperature distribution given by an algebraic expression T'(x, y, 2) = /x? + y?+
z then do

’T(x,y,z) = sqrt(x"2+y"2) + z ‘

B.11 Rule of Silence

Developers should design programs so that they do not print unnecessary output. This rule aims
to allow other programs and developers to pick out the information they need from a program’s
output without having to parse verbosity.

e No PRINT (or WRITEiMESH), no output.

B.12 Rule of Repair

Developers should design programs that fail in a manner that is easy to localize and diagnose
or in other words “fail noisily”. This rule aims to prevent incorrect output from a program from
becoming an input and corrupting the output of other code undetected.

« Input errors are detected before the computation is started:

|
$ feenox thermal-error.fee

Jan/18/2022 / v0.2+ / 4ddc623+€ 56/69

FeenoX Software Design Specification

error: undefined thermal conductivity 'k’

$

« Run-time errors can be user controled, they can be fatal or ignored.

B.13 Rule of Economy

Developers should value developer time over machine time, because machine cycles today are

relatively inexpensive compared to prices in the 1970s. This rule aims to reduce development costs
of projects.

+ Output is 100% user-defined so the desired results is directly obtained instead of needing further digging
into tons of undesired data.The approach of “compute and write everything you can in one single run”

made sense in 1970 where CPU time was more expensive than human time, but not anymore.
« Example: LE10 & LE11.

B.14 Rule of Generation

Developers should avoid writing code by hand and instead write abstract high-level programs that
generate code. This rule aims to reduce human errors and save time.

o Inputs are M4-like-macro friendly.

« Parametric runs can be done from scripts through command line arguments expansion.
» Documentation is created out of simple Markdown sources and assembled as needed.

B.15 Rule of Optimization

Developers should prototype software before polishing it. This rule aims to prevent developers
from spending too much time for marginal gains.

 Premature optimization is the root of all evil
« We are still building. We will optimize later.
— Code optimization: TODO
— Parallelization: TODO
— Comparison with other tools: TODO

B.16 Rule of Diversity

Developers should design their programs to be flexible and open. This rule aims to make programs
flexible, allowing them to be used in ways other than those their developers intended.

« Either Gmsh or Paraview can be used to post-process results.
o Other formats can be added.

Jan/18/2022 / v0.2+ / 4ddc623+€ 57/69

FeenoX Software Design Specification

B.17 Rule of Extensibility

Developers should design for the future by making their protocols extensible, allowing for easy
plugins without modification to the program’s architecture by other developers, noting the version
of the program, and more. This rule aims to extend the lifespan and enhance the utility of the code

the developer writes.
« FeenoX is GPLv3+. The ‘+’ is for the future.

« Each PDE has a separate source directory. Any of them can be used as a template for new PDEs, espe-
cially 1aptace for elliptic operators.

Jan/18/2022 / v0.2+ / 4ddc623+€ 58/69

Appendix C

Appendix: Downloading & compiling

FeenoX is distributed under the terms of the GNU General Public License version 3 or (at your option) any
later version. See licensing below for details.

GNU/Linux binaries https://www.seamplex.com/feenox/dist/linux
Windows binaries https://www.seamplex.com/feenox/dist/windows
Source tarballs https://www.seamplex.com/feenox/dist/src
Github repository https://github.com/seamplex/feenox/

» Be aware that FeenoX is a backend. It does not have a GUI. Read the documentation, especially the
description and the FAQs. Ask for help on the GitHub discussions page.

« Binaries are provided as statically-linked executables for convenience. They do not support MUMPS nor
MPI and have only basic optimization flags. Please compile from source for high-end applications. See
detailed compilatation instructions.

« Try to avoid Windows as much as you can. The binaries are provided as transitional packages for people
that for some reason still use such an outdated, anachronous, awful and invasive operating system. They
are compiled with Cygwin and have no support whatsoever. Really, really, get rid of Windows ASAP.

“It is really worth any amount of time and effort to get away from Windows if you are doing
computational science”

https://lists.mcs.anl.gov/pipermail/petsc-users/2015-July/026388.html

These detailed compilation instructions are aimed at amd64 Debian-based GNU/Linux distributions. The com-
pilation procedure follows POSIX, so it should work in other operating systems and architectures as well.
Distributions not using apt for packages (i.e. yum) should change the package installation commands (and pos-
sibly the package names). The instructions should also work for in MacOS, although the apt-get commands
should be replaced by brew or similar. Same for Windows under Cygwin, the packages should be installed
through the Cygwin installer. WSL was not tested, but should work as well.

Jan/18/2022 / 4ddc623+€

https://www.gnu.org/licenses/gpl-3.0.en.html
https://www.seamplex.com/feenox/dist/linux
https://www.seamplex.com/feenox/dist/windows
https://www.seamplex.com/feenox/dist/src
https://github.com/seamplex/feenox/
https://seamplex.com/feenox/doc/
https://www.seamplex.com/feenox/doc/feenox-desc.html
https://seamplex.com/feenox/doc/FAQ.html
https://github.com/seamplex/feenox/discussions
https://seamplex.com/feenox/doc/compilation.html
http://cygwin.com/
https://lists.mcs.anl.gov/pipermail/petsc-users/2015-July/026388.html
https://www.cygwin.com/

FeenoX Software Design Specification

C.1 Quickstart

Note that the quickest way to get started is to get an already-compiled statically-linked binary executable.
Follow these instructions if that option is not suitable for your workflow.

On a GNU/Linux box (preferably Debian-based), follow these quick steps. See next section for detailed expla-
nations.

To compile the Git repository, proceed as follows. This procedure does need git and autoconf but new versions
can be pulled and recompiled easily.

1. Install mandatory dependencies

|
sudo apt-get install gcc make git automake autoconf libgsl-dev

If you cannot install tibgsi-dev but still have git and the build toolchain, you can have the configure script
to download and compile it for you. See point 4 below.

2. Install optional dependencies (of course these are optional but recommended)

|
sudo apt-get install libsundials-dev petsc-dev slepc-dev

3. Clone Github repository

|
git clone https://github.com/seamplex/feenox

4. Boostrap, configure, compile & make

|
cd feenox

./autogen.sh

./configure
make -j4

If you cannot (or do not want) to use libgsi-dev from a package repository, call configure with --enable <+

-download-gsl:

|
./configure --enable-download-gsl

If you do not have Internet access, get the tarball manually, copy it to the same directory as configure
and run again.

5. Run test suite (optional)

|
make check

6. Install the binary system wide (optional)

|
sudo make install

Jan/18/2022 / v0.2+ / 4ddc623+€ 60/69

FeenoX Software Design Specification

To stay up to date, pull and then autogen, configure and make (and optionally install):
|

git pull

./autogen.sh; ./configure; make -j4
sudo make install

C.2 Detailed configuration and compilation

The main target and development environment is Debian GNU/Linux, although it should be possible to compile
FeenoX in any free GNU/Linux variant (and even the in non-free MacOS and Windows). As per the SRS, all
dependencies have to be available on mainstream GNU/Linux distributions. But they can also be compiled
from source in case the package repositories are not available or customized compilation flags are needed
(i.e. optimization or debugging settings).

All the dependencies are free and open source software. PETSc/SLEPc also depend on other mathematical
libraries to perform particular operations such as linear algebra. These extra dependencies can be either free
(such as LAPACK) or non-free (such as MKL), but there is always at least one combination of a working setup
that involves only free and open source software which is compatible with FeenoX licensing terms (GPLv3+).
See the documentation of each package for licensing details.

C.2.1 Mandatory dependencies

FeenoX has one mandatory dependency for run-time execution and the standard build toolchain for compila-
tion. It is written in C99 so only a C compiler is needed, although make is also required. Free and open source
compilers are favored. The usual C compiler is gcc but clang can also be used. Nevertheless, the non-free icc
has also been tested.

Note that there is no need to have a Fortran nor a C++ compiler to build FeenoX. They might be needed to
build other dependencies (such as PETSc), but not to compile FeenoX with all the dependencies installed from
package repositories. In case the build toolchain is not already installed, do so with

|
sudo apt-get install gcc make
|

If the source is to be fetched from the Git repository then of course git is needed but also autoconf and automake
since the configure script is not stored in the Git repository but the autogen.sh script that bootstraps the tree
and creates it. So if instead of compiling a source tarball one wants to clone from GitHub, these packages are
also mandatory:

|
sudo apt-get install git automake autoconf
|

Again, chances are that any existing GNU/Linux box has all these tools already installed.

C.2.1.1 The GNU Scientific Library
The only run-time dependency is GNU GSL (not to be confused with Microsoft GSL). It can be installed with

Jan/18/2022 / v0.2+ / 4ddc623+€ 61/69

SRS.md
https://www.gnu.org/software/gsl/
https://github.com/microsoft/GSL

FeenoX Software Design Specification

|
sudo apt-get install libgsl-dev
|

In case this package is not available or you do not have enough permissions to install system-wide packages,
there are two options.

1. Pass the option --enable-download-gst to the configure script below:.
2. Manually download, compile and install GNU GSL

If the configure script cannot find both the headers and the actual library, it will refuse to proceed. Note that
the FeenoX binaries already contain a static version of the GSL so it is not needed to have it installed in order
to run the statically-linked binaries.

C.2.2 Optional dependencies

FeenoX has three optional run-time dependencies. It can be compiled without any of these but functionality
will be reduced:

« SUNDIALS provides support for solving systems of ordinary differential equations (ODEs) or differential-
algebraic equations (DAEs). This dependency is needed when running inputs with the PHASE_SPACE <
keyword.

+ PETSc provides support for solving partial differential equations (PDEs). This dependency is needed
when running inputs with the proBLEM keyword.

« SLEPc provides support for solving eigen-value problems in partial differential equations (PDEs). This
dependency is needed for inputs with proBLEM types with eigen-value formulations such as modal and

neutron_transport.
In absence of all these, FeenoX can still be used to

« solve general mathematical problems such as the ones to compute the Fibonacci sequence,
« operate on functions, either algebraically or point-wise interpolated,

« read, operate over and write meshes,

. etc.

These optional dependencies have to be installed separately. There is no option to have configure to download
them as with - -enable-download-gs1.
C.2.2.1 SUNDIALS

SUNDIALS is a SUite of Nonlinear and DIfferential/ALgebraic equation Solvers. It is used by FeenoX to solve
dynamical systems casted as DAEs with the keyword pPHASE_sPAcE, like the Lorenz system.

Install either by doing

|
sudo apt-get install libsundials-dev
|

or by following the instructions in the documentation.

Jan/18/2022 / v0.2+ / 4ddc623+€ 62/69

https://www.gnu.org/software/gsl/
https://computing.llnl.gov/projects/sundials
https://petsc.org/
https://slepc.upv.es/
https://computing.llnl.gov/projects/sundials

FeenoX Software Design Specification

C.2.2.2 PETSc

The Portable, Extensible Toolkit for Scientific Computation, pronounced PET-see (/pet-siz/), is a suite of data
structures and routines for the scalable (parallel) solution of scientific applications modeled by partial differ-
ential equations. It is used by FeenoX to solve PDEs with the keyword prosLEM, like thermal conduction on a
slab.

Install either by doing

|
sudo apt-get install petsc-dev
|

or by following the instructions in the documentation.
Note that

 Configuring and compiling PETSc from scratch might be difficult the first time. It has a lot of dependen-
cies and options. Read the official documentation for a detailed explanation.

« There is a huge difference in efficiency between using PETSc compiled with debugging symbols and
with optimization flags. Make sure to configure --with-debugging=0 for FeenoX production runs and leave
the debugging symbols (which is the default) for development only.

+ FeenoX needs PETSc to be configured with real double-precision scalars. It will compile but will com-
plain at run-time when using complex and/or single or quad-precision scalars.

+ FeenoX honors the PETsc_DIR and PETSC_ARCH environment variables when executing configure. If these two
do not exist or are empty, it will try to use the default system-wide locations (i.e. the petsc-dev package).

C.2.2.3 SLEPc

The Scalable Library for Eigenvalue Problem Computations, is a software library for the solution of large scale
sparse eigenvalue problems on parallel computers. It is used by FeenoX to solve PDEs with the keyword
ProBLEM that need eigen-value computations, such as modal analysis of a cantilevered beam.

Install either by doing

|
sudo apt-get install slepc-dev
|

or by following the instructions in the documentation.
Note that

« SLEPc is an extension of PETSc so the latter has to be already installed and configured.

« FeenoX honors the sLeEpc_DIR environment variable when executing configure. If it does not exist or is
empty it will try to use the default system-wide locations (i.e. the stepc-dev package).

« If PETSc was configured with --download-stlepc then the sLerc DIR variable has to be set to the directory
inside PETSC_DIR where SLEPc was cloned and compiled.

C.2.3 FeenoX source code

There are two ways of getting FeenoX’ source code:

Jan/18/2022 / v0.2+ / 4ddc623+€ 63/69

(https://petsc.org/)
https://petsc.org/release/install/
https://slepc.upv.es/

FeenoX Software Design Specification

1. Cloning the GitHub repository at https://github.com/seamplex/feenox
2. Downloading a source tarball from https://seamplex.com/feenox/dist/src/

C.23.1 Git repository

The main Git repository is hosted on GitHub at https://github.com/seamplex/feenox. It is public so it
can be cloned either through HTTPS or SSH without needing any particular credentials. It can also be forked
freely. See the Programming Guide for details about pull requests and/or write access to the main repository.

Ideally, the main branch should have a usable snapshot. All other branches might contain code that might not
compile or might not run or might not be tested. If you find a commit in the main branch that does not pass
the tests, please report it in the issue tracker ASAP.

After cloning the repository

git clone https://github.com/seamplex/feenox

the autogen.sh script has to be called to bootstrap the working tree, since the configure script is not stored in
the repository but created from configure.ac (which is in the repository) by autogen.

Similarly, after updating the working tree with

git pull

it is recommended to re-run the autogen.sh script. It will do a make clean and re-compute the version string.

C.2.3.2 Source tarballs

When downloading a source tarball, there is no need to run autogen.sh since the configure script is already
included in the tarball. This method cannot update the working tree. For each new FeenoX release, the whole
tarball has to be downloaded again.

C.2.4 Configuration

To create a proper Makefile for the particular architecture, dependencies and compilation options, the script
configure has to be executed. This procedure follows the GNU Coding Standards.

|
IIiHHHEHEIiHII
|

Without any particular options, configure will check if the mandatory GNU Scientific Library is available (both
its headers and run-time library). If it is not, then the option - -enable-download-gsl can be used. This option will
try to use wget (which should be installed) to download a source tarball, uncompress is, configure and compile
it. If these steps are successful, this GSL will be statically linked into the resulting FeenoX executable. If there
is no internet connection, the configure script will say that the download failed. In that case, get the indicated
tarball file manually , copy it into the current directory and re-run ./configure.

The script will also check for the availability of optional dependencies. At the end of the execution, a summary
of what was found (or not) is printed in the standard output:

Jan/18/2022 / v0.2+ / 4ddc623+€ 64/69

https://github.com/seamplex/feenox
https://seamplex.com/feenox/dist/src/
https://github.com/seamplex/feenox
programming.md
https://www.gnu.org/prep/standards/
https://www.gnu.org/software/gsl/

FeenoX Software Design Specification

$./configure

Summary of dependencies

GNU Scientific Library from system
SUNDIALS IDA yes

PETSc yes /usr/lib/petsc
SLEPc no

If for some reason one of the optional dependencies is available but FeenoX should not use it, then pass -- «
without-sundials, --without-petsc and/or --without-slepc as arguments. For example

$./configure --without-sundials --without-petsc

GNU Scientific Li from system
SUNDIALS no
PETSc no
SLEPc no

If configure complains about contradicting values from the cached ones, run autogen.sh again before configure
or uncompress the source tarball in a fresh location.

To see all the available options run

./configure --help

C.2.5 Source code compilation
After the successful execution of configure, a Makefile is created. To compile FeenoX, just execute

make

Compilation should take a dozen of seconds. It can be even sped up by using the -j option

make -j8

The binary executable will be located in the src directory but a copy will be made in the base directory as well.
Test it by running without any arguments

|
$./feenox

FeenoX v0.1.24-g6cfe063

a free no-fee no-X uniX-like finite-element(ish) computational engineering tool

Jan/18/2022 / v0.2+ / 4ddc623+€ 65/69

FeenoX Software Design Specification

usage: ./feenox [options] inputfile [replacement arguments]

-h, --help display usage and commmand-line help and exit
--version display brief version information and exit
--versions display detailed version information

-s, --sumarize list all symbols in the input file and exit

Instructions will be read from standard input if “”- is passed as
inputfile, i.e.

$ echo "PRINT 2+2" | feenox -
4

Report bugs at https://github.com/seamplex/feenox or to jeremy@seamplex.com
Feenox home page: https://www.seamplex.com/feenox/
$

The -v (or --version) option shows the version and a copyright notice:

|
$./feenox -v

FeenoX v0.1.24-g6cfe063
a free no-fee no-X uniX-like finite-element(ish) computational engineering tool

Copyright (C) 2009--2021 jeremy theler

GNU General Public License v3+, https://www.gnu.org/licenses/gpl.html.
FeenoX is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.

$

The -v (or --versions) option shows the dates of the last commits, the compiler options and the versions of the
linked libraries:

|
$./feenox -V

FeenoX v0.1.24-g6cfe063
a free no-fee no-X uniX-like finite-element(ish) computational engineering tool

Last commit date : Sun Aug 29 11:34:04 2021 -0300

Build date : Sun Aug 29 11:44:50 2021 -0300

Build architecture : linux-gnu x86 64

Compiler : gcc (Ubuntu 10.3.0-1lubuntul) 10.3.0

Compiler flags : -03

Builder : gtheler@chalmers

GSL version 1 2.6

SUNDIALS version 1 4.1.0

PETSc version : Petsc Release Version 3.14.5, Mar 03, 2021

PETSc arch

PETSc options : --build=x86_64-linux-gnu --prefix=/usr --includedir=${prefix}/include --mandir=${prefix <=
}/share/man --infodir=${prefix}/share/info --sysconfdir=/etc --localstatedir=/var --with-option- <>
checking=0 --with-silent-rules=0 --libdir=${prefix}/1ib/x86 64-linux-gnu --runstatedir=/run --with- <
maintainer-mode=0 --with-dependency-tracking=0 --with-debugging=0 --shared-library-extension= real -- <>
with-shared-libraries --with-pic=1 --with-cc=mpicc --with-cxx=mpicxx --with-fc=mpif90 --with-cxx- <>
dialect=C++11 --with-opencl=1l --with-blas-lib=-1blas --with-lapack-lib=-1lapack --with-scalapack=1 -- <>

Jan/18/2022 / v0.2+ / 4ddc623+¢

FeenoX Software Design Specification

with-scalapack-lib=-1scalapack-openmpi --with-ptscotch=1 --with-ptscotch-include=/usr/include/scotch -- <>
with-ptscotch-1lib="-1ptesmumps -lptscotch -lptscotcherr" --with-fftw=1 --with-fftw-include="[]" --with- <
fftw-lib="-1fftw3 -1fftw3 mpi" --with-superlu_ dist=1 --with-superlu_dist-include=/usr/include/superlu- <>
dist --with-superlu dist-lib=-1lsuperlu dist --with-hdf5-include=/usr/include/hdf5/openmpi --with-hdf5- <>
1ib="-L/usr/1ib/x86_64-1linux-gnu/hdf5/openmpi -L/usr/1ib/x86_64-linux-gnu/openmpi/lib -1hdf5 -lmpi" -- <
CXX_LINKER FLAGS=-W1,--no-as-needed --with-hypre=1 --with-hypre-include=/usr/include/hypre --with-hypre <=
-lib=-1HYPRE core --with-mumps=1 --with-mumps-include="[]" --with-mumps-1ib="-1ldmumps -1lzmumps -lsmumps <
-lcmumps -1lmumps_common -lpord" --with-suitesparse=1 --with-suitesparse-include=/usr/include/ <>

suitesparse --with-suitesparse-lib="-lumfpack -lamd -lcholmod -lklu" --with-superlu=1 --with-superlu- <
include=/usr/include/superlu --with-superlu-lib=-1superlu --prefix=/usr/lib/petscdir/petsc3.14/x86 64- <~
linux-gnu-real --PETSC ARCH=x86 64-linux-gnu-real CFLAGS="-g -02 -ffile-prefix-map=/build/petsc-pVufYp/ <>
petsc-3.14.5+dfsgl=. -flto=auto -ffat-lto-objects -fstack-protector-strong -Wformat -Werror=format- <
security -fPIC" CXXFLAGS="-g -02 -ffile-prefix-map=/build/petsc-pVufYp/petsc-3.14.5+dfsgl=. -flto=auto <>
-ffat-lto-objects -fstack-protector-strong -Wformat -Werror=format-security -fPIC" FCFLAGS="-g -02 - <>
ffile-prefix-map=/build/petsc-pVufYp/petsc-3.14.5+dfsgl=. -flto=auto -ffat-lto-objects -fstack- <>
protector-strong -fPIC -ffree-line-length-0" FFLAGS="-g -02 -ffile-prefix-map=/build/petsc-pVufYp/petsc <~
-3.14.5+dfsgl=. -flto=auto -ffat-lto-objects -fstack-protector-strong -fPIC -ffree-line-length-0" <>
CPPFLAGS="-Wdate-time -D FORTIFY SOURCE=2" LDFLAGS="-Wl,-Bsymbolic-functions -flto=auto -Wl,-z,relro - <>
fPIC" MAKEFLAGS=w

SLEPc version : SLEPc Release Version 3.14.2, Feb 01, 2021

$

C.2.6 Test suite

To be explained.

C.2.7 Installation

To be explained.

C.3 Advanced settings

C.3.1 Compiling with debug symbols

By default the C flags are -03, without debugging. To add the -g flag, just use cFLAGS when configuring:

|
./configure CFLAGS="-g -00"

C.3.2 Using a different compiler

Without PETSc, FeenoX uses the cc environment variable to set the compiler. So configure like

|
./configure CC=clang
|

When PETSc is detected FeenoX uses the mpicc executable, which is a wrapper to an actual C compiler with
extra flags needed to find the headers and the MPI library. To change the wrapped compiler, you should set
MPICH_cc or oMPI_cc, depending if you are using MPICH or OpenMPI. For example, to force MPICH to use clang
do

Jan/18/2022 / v0.2+ / 4ddc623+€ 67/69

FeenoX Software Design Specification

To know which is the default MPI implementation, just run configure without arguments and pay attention to
the “Compiler” line in the “Summary of dependencies” section. For example, for OpenMPI a typical summary
would be

|

Summary of dependencies

GNU Scientific Library from system

SUNDIALS yes

PETSc yes /usr/lib/petsc

SLEPC yes /usr/lib/slepc

Compiler gcc -I/usr/lib/x86 64-linux-gnu/openmpi/include/openmpi -I/usr/lib/x86 64-linux- <
gnu/openmpi/include -pthread -L/usr/lib/x86 64-1linux-gnu/openmpi/lib -1lmpi

For MPICH:
|

Summary of dependencies

GNU Scientific Library from system

SUNDIALS yes

PETSc yes /home/gtheler/libs/petsc-3.15.0 arch-1linux2-c-debug

SLEPC yes /home/gtheler/libs/slepc-3.15.1

Compiler gcc -Wl,-z,relro -I/usr/include/x86 64-1linux-gnu/mpich -L/usr/lib/x86 64-linux-gnu <
-lmpich

Other non-free implementations like Intel MPI might work but were not tested. However, it should be noted
that the MPI implementation used to compile FeenoX has to match the one used to compile PETSc. Therefore,
if you compiled PETSc on your own, it is up to you to ensure MPI compatibility. If you are using PETSc
as provided by your distribution’s repositories, you will have to find out which one was used (it is usually
OpenMPI) and use the same one when compiling FeenoX.

The FeenoX executable will show the configured compiler and flags when invoked with the --versions option:

|
$ feenox --versions

FeenoX v0.1.47-g868dbb7-dirty
a free no-fee no-X uniX-like finite-element(ish) computational engineering tool

Last commit date : Mon Sep 6 16:39:53 2021 -0300
Build date : Tue Sep 07 14:29:42 2021 -0300
Build architecture : linux-gnu x86 64

Compiler : gcc (Debian 10.2.1-6) 10.2.1 20210110
Compiler flags : -03

Builder : gtheler@tom

GSL version : 2.6

SUNDIALS version : 5.7.0

PETSc version : Petsc Release Version 3.15.0, Mar 30, 2021
PETSc arch : arch-linux2-c-debug

Jan/18/2022 / v0.2+ / 4ddc623+€ 68/69

FeenoX Software Design Specification

PETSc options : --download-eigen --download-hdf5 --download-hypre --download-metis --download-mumps -- <=
download-parmetis --download-pragmatic --download-scalapack --with-x=0

SLEPc version : SLEPc Release Version 3.15.1, May 28, 2021
$

Note that the reported values are the ones used in configure and not in make. Thus, the recommended way to
set flags is in configure and not in make.

C.3.3 Compiling PETSc
To be explained.

Jan/18/2022 / v0.2+ / 4ddc623+€ 69/69

	Introduction
	Objective
	Scope

	Architecture
	Deployment
	Execution
	Direct execution

	Parametric
	Optimization loops

	Efficiency
	Scalability
	Flexibility
	Extensibility
	Interoperability

	Interfaces
	Problem input
	Results output

	Quality assurance
	Reproducibility and traceability
	Automated testing
	Bug reporting and tracking
	Verification
	Validation
	Documentation

	Appendix: Downloading and compiling FeenoX
	Binary executables
	Source tarballs
	Git repository

	Appendix: Rules of UNIX philosophy
	Rule of Modularity
	Rule of Clarity
	Rule of Composition
	Rule of Separation
	Rule of Simplicity
	Rule of Parsimony
	Rule of Transparency
	Rule of Robustness
	Rule of Representation
	Rule of Least Surprise
	Rule of Silence
	Rule of Repair
	Rule of Economy
	Rule of Generation
	Rule of Optimization
	Rule of Diversity
	Rule of Extensibility

	Appendix: Downloading & compiling
	Quickstart
	Detailed configuration and compilation
	Mandatory dependencies
	Optional dependencies
	FeenoX source code
	Configuration
	Source code compilation
	Test suite
	Installation

	Advanced settings
	Compiling with debug symbols
	Using a different compiler
	Compiling PETSc

