FeenoX Software Design Specification

2025-06-17

Abstract

This Software Design Specification (SDS) document applies to an imaginary Software Requirements Spec-
ification (SRS) document issued by a fictitious agency asking for vendors to offer a free and open source
cloud-based computational tool to solve engineering problems. The latter can be seen as a “Request for
Quotation” and the former as an offer for the fictitious tender. Each section of this SDS addresses one
section of the SRS. The original text from the SRS is shown quoted at the very beginning before the actual

SDS content.

./srs.md
./srs.md

Contents

1 Introduction

1.1
1.2

2 Architecture

“Cloud first” vs. “cloud friendly”
Unfair advantage
Licensing
Objective o

Scope

1.2.1
1.2.2

NAFEMS LE10 benchmark
The Lorenz chaotic system

2.1 Deployment
22 Execution.
221 Directexecution e
222 Parametric.
2.23 Optimizationloops L
23 Efficiencyo
2.4 Scalability
25 Flexibilityo
2.6 Extensibility
2.7 Interoperability
3 Interfaces
3.1 Probleminput
3.1.1 Syntactic sugar & highlighting,
3.1.2 Definitions and instructions L oo
3.1.3 Simpleinputs
3.14 Complexthings
3.1.5 Everythingisanexpression
3.1.6 Matching formulations Lo
3.1.7 Comparison of solutions L
3.1.8 Run-timearguments L L
3.1.9 Gitand macro-friendliness L L
3.2 Resultsoutput
3.21 Outputformats
3.2.2 Data exchange between non-conformal meshes

10
11
12
14
17

19
24
27
29
31
33
35
38
42
47
49

4 Quality assurance

4.1 Reproducibility and traceability o
4.2 Automatedtesting
43 Bugreporting and tracking
4.4 Documentation

Appendix: Downloading and compiling FeenoX

A.1 Binary executables
A2 Sourcetarballs
A3 Gitrepository
Appendix: Rules of Unix philosophy
B.1 Ruleof Modularity
B.2 RuleofClarity
B.3 Ruleof Composition.
B.4 RuleofSeparation
B.5 Ruleof Simplicity
B.6 RuleofParsimony
B.7 Ruleof Transparency i
B.8 Ruleof Robustness
B.9 Ruleof Representation
B.10 Rule of Least Surprise
B.11 RuleofSilence
B.12 Ruleof Repair
B.13 Ruleof Economy
B.14 Rule of Generation
B.15 Rule of Optimization e
B.16 Ruleof Diversity e
B.17 Rule of Extensibility
Appendix: FeenoX history
Appendix: Downloading & compiling
D.1 Debian/Ubuntuinstall L
D2 Downloads e
D.2.1 Statically-linked binaries L
D.2.2 Compile fromsource
D.2.3 Githubrepository
D3 Licensing e e
D4 Quickstart
D.5 Detailed configuration and compilation oL
D.5.1 Mandatory dependencies
D.5.1.1 The GNU Scientific Library
D.5.2 Optional dependencies L
D.5.21 SUNDIALS o e
D.5.22 PETSC . . . oo
D.5.23 SLEPc. e
D.5.3 FeenoXsourcecode

88
88
91
92
92

97
97
98
99

101
101
102
102
103
103
103
104
104
104
104
105
105
105
106
106
106
106

107

D.5.3.1 Gitrepository

D5.3.2 Sourcetarballs
D.5.4 Configuration L
D.5.5 Source code compilation o Lo
D.5.6 Testsuite
D.5.7 Imstallation
D.6 Advanced settings
D.6.1 Compiling with debug symbols L o L
D.6.2 Usingadifferentcompiler Lo
D.6.3 Compiling PETSc o
Appendix: Inputs for solving LE10 with other FEA programs
E1l CalculiX e
E2 CodeAster o o i
E3 Elmer e
Appendix: Downloading and compiling FeenoX
A.1 Binaryexecutables
A2 Sourcetarballs
A3 Gitrepository
Appendix: Rules of Unix philosophy
B.1 Ruleof Modularity
B.2 RuleofClarity e
B.3 Ruleof Composition. L
B.4 RuleofSeparation
B.5 Ruleof Simplicity
B.6 RuleofParsimony
B.7 Ruleof Transparency i
B.8 Ruleof Robustness
B.9 Ruleof Representation
B.10 Rule of Least Surprise
B.11 Ruleof Silence
B.12 Rule of Repair
B.13 Ruleof Economy
B.14 Rule of Generation
B.15 Rule of Optimization
B.16 Ruleof Diversity
B.17 Rule of Extensibility
Appendix: FeenoX history
Appendix: Downloading & compiling
D.1 Debian/Ubuntuinstall L
D2 Downloads
D.2.1 Statically-linked binaries Lo
D.2.2 Compile fromsource
D.23 Githubrepository e

131
131
132
133

136
136
137
138

140
140
141
141
142
142
142
143
143
143
143
144
144
144
145
145
145
145

146

D3 Licensing oo e 153

D4 Quickstart 154
D.5 Detailed configuration and compilation L o L oL 155
D.5.1 Mandatory dependencies. 156
D.5.1.1 The GNU Scientific Library 156

D.5.2 Optional dependencies L 157
D.5.21 SUNDIALS 157

D.5.22 PETSc . . . oo e 157

D.5.23 SLEPc. e 158

D.5.3 FeenoXsourcecode 158
D.5.3.1 Gitrepository 158

D5.3.2 Sourcetarballs 159

D.5.4 Configuration 159

D.5.5 Source code compilation L L oL 160

D.5.6 Testsuite 161

D5.7 Installation 166

D.6 Advancedsettings 167
D.6.1 Compiling with debug symbols L oL 167

D.6.2 Using adifferentcompiler 168

D.6.3 Compiling PETSc e 169
Appendix: Inputs for solving LE10 with other FEA programs 170
E1l CalculiX 170
E2 CodeAster 171
E3 Elmer 172

Chapter 1

Introduction

A computational tool (herein after referred to as the tool) specifically designed to be executed
in arbitrarily-scalable remote servers (i.e. in the cloud) is required in order to solve engineer-
ing problems following the current state-of-the-art methods and technologies impacting the
high-performance computing world. This (imaginary but plausible) Software Requirements
Specification document describes the mandatory features this tool ought to have and lists
some features which would be nice the tool had. Also it contains requirements and guidelines
about architecture, execution and interfaces in order to fulfill the needs of cognizant engineers
as of the 2020s.

On the one hand, the tool should allow to solve industrial problems under stringent efficiency
(sec. 2.3) and quality (sec. 4) requirements. It is therefore mandatory to be able to assess the
source code for

« independent verification, and/or
« performance profiling, and/or
« quality control

by qualified third parties from all around the world. Hence, it has to be open source according
to the definition of the Open Source Initiative.

On the other hand, the initial version of the tool is expected to provide a basic functionality
which might be extended (sec. 1.1 and sec. 2.6) by academic researchers and/or professional
programmers. It thus should also be free—in the sense of freedom, not in the sense of price—
as defined by the Free Software Foundation. There is no requirement on the pricing scheme,
which is up to the vendor to define in the offer along with the detailed licensing terms. These
should allow users to solve their problems the way they need and, eventually, to modify and
improve the tool to suit their needs. If they cannot program themselves, they should have the
freedom to hire somebody to do it for them.

FeenoX is a cloud-first computational tool aimed at solving engineering problems with a particular design
basis, as explained in

« Theler, J. (2024). FeenoX: a cloud-first finite-element(ish) computational engineering tool. Journal
of Open Source Software, 9(95), 5846. https://doi.org/10.21105/j0ss.05846

https://www.seamplex.com/feenox/
https://doi.org/10.21105/joss.05846

“Cloud first” vs. “cloud friendly”

In web design theory, there is a difference between mobile-first and mobile-friendly interfaces. In the same
sense, FeenoX is cloud first and not just cloud friendly.

But what does this mean? Let us first start with the concept of “cloud friendliness,” meaning that it is
possible to run something on the cloud without substantial effort. This implies that a computational tool
is cloud friendly if it

1. can be executed remotely without any special care, i.e. a GNU/Linux binary ran on a server through
SSH,

2. can exploit the (in principle) unbounded resources provided by a set of networked servers, and

3. does not need interactive input meaning that, once launched, it can finish without needing further
human intervention.

Yet, a cloud-first tool needs to take account other more profound concepts as well in early-stage design
decisions. In software development, the modification of an existing desktop-based piece of software to
allow remote execution is called “cloud-enabling” In words of a senior manager, “cloud development is
the opposite of desktop development.” So starting from scratch a cloud-first tool is a far better approach
than refactoring an existing desktop program to make it cloud friendly.

For instance, to make proper use of the computational resources available in remote servers launched on
demand, it is needed to

« have all the hosts in a particular network
« configure a proper domain name service
« design shared network file systems

 etc.

Instead of having to manually perform this set up each time a calculation is needed, one can automate the
workflow with ad-hoc scripts acting as “thin clients” which would, for instance,

« launch and configure the remote computing instances, optionally using containerization technology
« send the input files needed by the computational tools
« launch the actual computational tools (Gmsh, FeenoX, etc.) over the instances, e.g. using mpiexec or
similar to be able to either
a. to reduce the wall time needed to solve a problem, and/or
b. to allow the solution of large problems that do not fit into a single computer
« monitor and communicate with the solver as the calculation progresses
« handle eventual errors
« get back and process the results

Furthermore, we could design and implement more complex clients able to handle things like

« authentication

« resource management (i.e. CPU hours)

« estimation of the number and type of instances needed to solve a certain problem
 parametric sweeps

« optimization loops

« conditionally-chained simulations

- etc.

Therefore, the computational tools that would perform the actual calculations should be designed in such
a way not only to allow these kind of workflows but also to make them efficient. In fact, we say “clients”
in plural because—as the Unix rule of diversity (sec. B.16) asks for-depending on the particular problem
type and requirements different clients might be needed. And since FeenoX itself is flexible enough to be
able to solve not only different types of partial differential equations but also

« different types of problems
— coupled
— parametric
optimization
- etc.

« in different environments
many small cases

a few big ones

— only one but huge

- etc.

+ under different conditions
— in the industry by a single engineer
— in the academy by several researchers
— as a service in a public platform
- etc.

then it is expected nor to exist a one-size-fits-all solution able to handle all the combinations in an optimum
way.

However, if the underlying computational tool has been carefully designed to be able to handle all these
details and to be flexible enough to accommodate other eventual and/or unexpected requirements by de-
sign, then we say that the tool is “cloud first” Throughout this SDS we thoroughly explain the features of
this particular cloud-first design. Indeed, FeenoX is essentially a back end which can work with a number
of different front ends (fig. 1.1), including these thin clients and web-based interfaces (fig. 1.2)

Unfair advantage

To better illustrate FeenoX’s unfair advantage (in the entrepreneurial sense), let us first consider what the
options are when we need to write a technical report, paper or document:

Feature Microsoft Word Google Docs Markdown! (La)TeX
Aesthetics X X v v
Convertibility (to other ~ ~ v ~
formats)

Traceability X ~ v v
Mobile-friendliness X v v X
Collaborativeness X v v ~
Licensing/openness X X v v
Non-nerd friendliness v v ~ X

'Here “Markdown” means (Pandoc + Git + Github / Gitlab / Gitea)

https://en.wikipedia.org/wiki/Markdown
https://pandoc.org/
https://git-scm.com/
https://github.com/
https://about.gitlab.com/
https://gitea.com/%7D%7BGitea%7D

FRONT-END

BACK-END

Figure 1.1: Conceptual illustration of the difference between a front end and a back end ©bluecoders.

After analyzing the pros and cons of each alternative, at some point it should be evident that Markdown
(plus friends) gives the best trade off. We can then perform a similar analysis for the options available in
order to solve an engineering problem casted as a partial differential equation, say by using a finite-element
formulation:

Feature Desktop GUIs Web frontends FeenoX? Libraries
Flexibility ~ X v v
Scalability X ~ v v
Traceability X ~ v v
Cloud-friendliness X v v v
Collaborativeness X v v ~
Licensing/openness V[~ X X v v
Non-nerd friendliness v v ~ X

Therefore, FeenoX is—in a certain sense—to desktop FEA programs like

« Code_Aster with Salome-Meca, or
« CalculiX with PrePoMax

and to libraries like

+ MoFEM or
« Sparselizard

*Here “FeenoX” means (FeenoX + Gmsh + Paraview + Git + Github / Gitlab / Gitea)

https://en.wikipedia.org/wiki/Markdown
https://www.code-aster.org/spip.php?rubrique2
https://www.code-aster.org/V2/spip.php?article303
http://www.calculix.de/
https://prepomax.fs.um.si/
http://mofem.eng.gla.ac.uk/mofem/html/
http://sparselizard.org/
https://seamplex.com/feenox
http://gmsh.info
https://www.paraview.org/
https://git-scm.com/
https://github.com/
https://about.gitlab.com/
https://gitea.com/%7D%7BGitea%7D

Figure 1.2: The web-based platform CAEplex for FeenoX. https://www.youtube.com/watch?v=7KqiMbrS
LDc

https://www.caeplex.com
https://www.youtube.com/watch?v=7KqiMbrSLDc
https://www.youtube.com/watch?v=7KqiMbrSLDc

what Markdown is to Word and (La)TeX, respectively and deliberately.

Licensing

FeenoX is licensed under the terms of the GNU General Public License version 3 or, at the user convenience,
any later version. This means that users get the four essential freedoms:*

. The freedom to run the program as they wish, for any purpose.

. The freedom to study how the program works, and change it so it does their computing as they wish.
. The freedom to redistribute copies so they can help others.

. The freedom to distribute copies of their modified versions to others.

W N =R O

So a free program has to be open source, but it also has to explicitly provide the four freedoms above
both through the written license and through appropriate mechanisms to get, modify, compile, run and
document these modifications using well-established and/or reasonable straightforward procedures. That
is why licensing FeenoX as GPLv3+ also implies that the source code and all the scripts and makefiles
needed to compile and run it are available for anyone that requires it (i.e. it is compiled with ./configure +

&& make). Anyone wanting to modify the program either to fix bugs, improve it or add new features is
free to do so. And if they do not know how to program, the have the freedom to hire a programmer to do
it without needing to ask permission to the original authors. Even more, the documentation is released
under the terms of the Creative Commons Attribution-ShareAlike 4.0 International License so these new
(or modified) features can be properly documented as well.

Nevertheless, since these original authors are the copyright holders, they still can use it to either enforce
or prevent further actions from the users that receive FeenoX under the GPLv3+. In particular, the license
allows re-distribution of modified versions only if

a. they are clearly marked as different from the original, and
b. they are distributed under the same terms of the GPLv3+.

There are also some other subtle technicalities that need not be discussed here such as

- what constitutes a modified version (which cannot be redistributed under a different license)
+ what is an aggregate (in which each part be distributed under different licenses)
« usage over a network and the possibility of using AGPL instead of GPL to further enforce freedom

These issues are already taken into account in the FeenoX licensing scheme.

It should be noted that not only is FeenoX free and open source, but also all of the libraries it depends
on (and their dependencies) also are. It can also be compiled using free and open source build tool chains
running over free and open source operating systems.

To sum up this introduction, FeenoX is...

1. a cloud-first computational tool (not just cloud friendly, but cloud first).

*There are some examples of pieces of computational software which are described as “open source” in which even the first
of the four freedoms is denied. The most iconic case is that of Android, whose sources are readily available online but there is no
straightforward way of updating one’s mobile phone firmware with a customized version, not to mention vendor and hardware
lock ins and the possibility of bricking devices if something unexpected happens. In the nuclear industry, it is the case of a Monte
Carlo particle-transport program that requests users to sign an agreement about the objective of its usage before allowing its
execution. The software itself might be open source because the source code is provided after signing the agreement, but it is not
free (as in freedom) at all.

10

https://commonmark.org/
https://en.wikipedia.org/wiki/LaTeX
https://www.gnu.org/licenses/gpl-3.0
https://seamplex.com/feenox/doc/
https://creativecommons.org/licenses/by-sa/4.0/
https://en.wikipedia.org/wiki/GNU_Affero_General_Public_License

2. to traditional computational software and to specialized libraries what Markdown is to Word and
TeX, respectively.
3. both free (as in freedom) and open source.

1.1 Objective

The main objective of the tool is to be able to solve engineering problems which are usually
casted as differential-algebraic equations (DAEs) or partial differential equations (PDEs), such
as

+ heat conduction

» mechanical elasticity

« structural modal analysis

« mechanical frequency studies
« electromagnetism

+ chemical diffusion

« process control dynamics

+ computational fluid dynamics

on one or more mainstream cloud servers, i.e. computers with hardware and operating systems
(further discussed in sec. 2) that allows them to be available online and accessed remotely
either interactively or automatically by other computers as well. Other architectures such as
high-end desktop personal computers or even low-end laptops might be supported but they
should not the main target (i.e. the tool has to be cloud-first but laptop-friendly).

The initial version of the tool must be able to handle a subset of the above list of problem
types. Afterward, the set of supported problem types, models, equations and features of the
tool should grow to include other models as well, as required in sec. 2.6.

The choice of the initial supported features is based on the types of problem that the FeenoX’s precursor
codes (namely wasora, Fino and milonga, referred to as “previous versions” from now on) already have
been supporting since more than ten years now. A subsequent road map and release plans can be designed
as requested. FeenoX’s first version includes a subset of the required functionality, namely

« open and closed-loop dynamical systems

« Laplace/Poisson/Helmholtz equations

+ heat conduction

« mechanical elasticity

« structural modal analysis

 multi-group neutron transport and diffusion

Sec. 2.6 explains the mechanisms that FeenoX provides in order to add (or even remove) other types of
problems to be solved.

Recalling that FeenoX is a “cloud-first” tool as explained in sec. 1, it is designed to be developed and exe-
cuted primarily on GNU/Linux hosts, which is the architecture of more than 90% of the internet servers
which we collectively call “the public cloud.” It should be noted that GNU/Linux is a POSIX-compliant op-
erating system which is compatible with Unix, and that FeenoX was designed and implemented following
the rules of Unix philosophy which is further explained in sec. B. Besides the POSIX standard, as explained

11

https://en.wikipedia.org/wiki/Markdown
https://en.wikipedia.org/wiki/Microsoft_Word
https://en.wikipedia.org/wiki/TeX
https://en.wikipedia.org/wiki/Free_as_in_Freedom
https://www.gnu.org/gnu/linux-and-gnu.html
https://en.wikipedia.org/wiki/POSIX
https://en.wikipedia.org/wiki/Unix

below in sec. 2.4, FeenoX also uses MPI which is a well-known industry standard for massive execution
of parallel processes following the distributed-systems parallelization paradigm. Finally, if performance
and/or scalability are not important issues, FeenoX can be run in a (properly cooled) local PC, laptop or
even in embedded systems such as Raspberry Pi (see sec. 2).

1.2 Scope

The tool should allow users to define the problem to be solved programmatically. That is to
say, the problem should be completely defined using one or more files either...

a. specifically formatted for the tool to read such as JSON or a particular input format
(historically called input decks in punched-card days), and/or
b. written in an high-level interpreted language such as Python or Julia.

Once the problem has been defined and passed on to the solver, no further human intervention
should be required.

It should be noted that a graphical user interface is not required. The tool may include one,
but it should be able to run without needing any interactive user intervention rather than the
preparation of a set of input files. Nevertheless, the tool might allow a GUI to be used. For
example, for a basic usage involving simple cases, a user interface engine should be able to
create these problem-definition files in order to give access to less advanced users to the tool
using a desktop, mobile and/or web-based interface in order to run the actual tool without
needing to manually prepare the actual input files.

However, for general usage, users should be able to completely define the problem (or set of
problems, i.e. a parametric study) they want to solve in one or more input files and to obtain
one or more output files containing the desired results, either a set of scalar outputs (such as
maximum stresses or mean temperatures), and/or a detailed time and/or spatial distribution.
If needed, a discretization of the domain may to be taken as a known input, i.e. the tool is
not required to create the mesh as long as a suitable mesher can be employed using a similar
workflow as the one specified in this SRS.

The tool should define and document (sec. 4.4) the way the input files for a solving particular
problem are to be prepared (sec. 3.1) and how the results are to be written (sec. 3.2). Any
GUI, pre-processor, post-processor or other related graphical tool used to provide a graphical
interface for the user should integrate in the workflow described in the preceding paragraph:
a pre-processor should create the input files needed for the tool and a post-processor should
read the output files created by the tool.

Since FeenoX is designed to be executed in the cloud, it works very much like a transfer function between
one (or more) files and zero or more output files:

o - +

mesh (*.msh) } | | { terminal

data (*.dat) } input ----> | FeenoX |----> output { data files

input (*.fee) } | | { post (vtk/msh)
R +

Technically speaking, FeenoX can be seen as a Unix filter designed to read an ASCII-based stream of
characters (i.e. the input file, which in turn can include other input files or contain instructions to read

12

https://en.wikipedia.org/wiki/Message_Passing_Interface
https://en.wikipedia.org/wiki/Raspberry_Pi
https://en.wikipedia.org/wiki/Filter_(software)
https://en.wikipedia.org/wiki/ASCII

data from mesh and/or other data files) and to write ASCII-formatted data into the standard output and/or
other files. The input file can be prepared either by a human or by another program. The output stream
and/or files can be read by either a human and/or another programs. A quotation from Eric Raymond’s
The Art of Unix Programming helps to illustrate this idea:

Doug Mcllroy, the inventor of Unix pipes and one of the founders of the Unix tradition, had
this to say at the time:

(i) Make each program do one thing well. To do a new job, build afresh rather than compli-
cate old programs by adding new features.

(if) Expect the output of every program to become the input to another, as yet unknown,
program. Don’t clutter output with extraneous information. Avoid stringently columnar
or binary input formats. Don’t insist on interactive input.

He later summarized it this way (quoted in “A Quarter Century of Unix” in 1994):

« This is the Unix philosophy: Write programs that do one thing and do it well. Write
programs to work together. Write programs to handle text streams, because that is a
universal interface.

Keep in mind that even though both the quotes above and many finite-element programs that are still
mainstream today date both from the early 1970s, fifty years later the latter still

+ do not make just only one thing well,

« do complicate old programs by adding new features,

« do not expect their output to become the input to another,

« do clutter output with extraneous information,

+ do use stringently columnar and/or binary input (and output!) formats, and/or
« do insist on interactive input.

There are other FEA tools that, even though born closer in time, also follow the above bullets literally.
But FeenoX does not, since it follows the Unix philosophy in general and Eric Raymond’s 17 Unix Rules
(sec. B) in particular. One of the main ideas is the rule of separation (sec. B.4) that essentially asks to separate
mechanism from policy, that in the computational engineering world translates into separating the front
end from the back end as illustrated in fig. 1.1.

When solving ordinary differential equations, the usual workflow involves solving them with FeenoX
and plotting the results with Gnuplot or Pyxplot. When solving partial differential equations (PDEs), the
mesh is created with Gmsh and the output can be post-processed with Gmsh, Paraview or any other post-
processing system (even a web-based interface) that follows rule of separation. Even though most FEA
programs eventually separate the interface from the solver up to some degree, there are cases in which
they are still dependent such that changing the former needs updating the latter. This is the usual case
with legacy programs designed back in the 1990s (or even one or two decades before) that are still around
nowadays. They usually still fulfill almost all of the bullets above and are the ones which their owners are
trying to convert from desktop to cloud-enabled programs instead of starting from scratch.

From the very beginning, FeenoX is designed as a pure back end which should nevertheless provide appro-
priate mechanisms for different front ends to be able to communicate and to provide a friendly interface
for the final user. Yet, the separation is complete in the sense that the nature of the front ends can radi-
cally change (say from a desktop-based point-and-click program to a web-based interface or an immersive

13

http://www.catb.org/esr/
http://www.catb.org/esr/writings/taoup/
https://en.wikipedia.org/wiki/Douglas_McIlroy
https://en.wikipedia.org/wiki/Pipeline_%28Unix%29
https://en.wikipedia.org/wiki/Unix_philosophy

augmented-reality application with goggles) without needing the modify the back end. Not only far more
flexibility is given by following this path, but also develop efficiency and quality is encouraged since pro-
grammers working on the lower-level of an engineering tool usually do not have the skills needed to write
good user-experience interfaces, and conversely.

In the very same sense, FeenoX does not discretize continuous domains for PDE problems itself, but relies
on separate tools for this end. Fortunately, there already exists one meshing tool which is FOSS (GPLv2)
and shares most (if not all) of the design basis principles with FeenoX: the three-dimensional finite element
mesh generator Gmsh.

Strictly speaking, FeenoX does not need to be used along with Gmsh but with any other mesher able to
write meshes in Gmsh’s format .msh. But since Gmsh also

« is free and open source,

« works also in a transfer-function-like fashion,

« runs natively on GNU/Linux,

« has a similar (but more comprehensive) API for Python/Julia,
« etc.

it is a perfect match for FeenoX. Even more, it provides suitable domain decomposition methods (through
other open-source third-party libraries such as Metis) for scaling up large problems.

1.2.1 NAFEMS LE10 benchmark

Let us solve the linear elasticity benchmark problem NAFEMS LE10 “Thick plate pressure.” with FeenoX.
Note the one-to-one correspondence between the human-friendly problem statement from fig. 1.3 and the
FeenoX input file:

NAFEMS Benchmark LE-10: thick plate pressure
PROBLEM mechanical DIMENSIONS 3
READ_MESH nafems-lel@.msh # mesh in millimeters

LOADING: uniform normal pressure on the upper surface
BC upper p=1 # 1 Mpa

BOUNDARY CONDITIONS:
BC DCD'C' v=0
BC ABA'B' u=0
BC BCB'C' u=0 v=0
BC midplane w=0

Face DCD'C' zero y-displacement
Face ABA'B' zero x-displacement
Face BCB'C' x and y displ. fixed
z displacements fixed along mid-plane

H Ik W

MATERIAL PROPERTIES: isotropic single-material properties

E = 210e3 # Young modulus in MPa
nu = 0.3 # Poisson's ratio
SOLVE_PROBLEM # solve!

print the direct stress y at D (and nothing more)
PRINT "o y @ D = " sigmay(2000,0,300) "MPa"

Here, “one-to-one” means that the input file does not need any extra definition which is not part of the
problem formulation. Of course the cognizant engineer can give further definitions such as

o the linear solver and pre-conditioner
+ the tolerances for iterative solvers
« options for computing stresses out of displacements

14

http://gmsh.info/
http://glaros.dtc.umn.edu/gkhome/metis/metis/overview
https://www.seamplex.com/feenox/examples/mechanical.html#nafems-le10-thick-plate-pressure-benchmark

THICK PLATE

Test No DATE /155U
AFETIS Fei me | wews
ORIGIN NAFEMS report 1582 ﬁ & * nafems-le10.fee — Kate v

ANALYSIS TYPE Linear elastic solid @™ Edit View Projects Bookmarks Sessions Tools Settings Help

GEOMETRY nafems-le10.fee @ nm
x
B (E)Z*(ﬁ;)z =1 # NAFEMS Benchmark LE-10: thick plate pressure (mE=
. PROBLEM mechanical DIMENSIONS 3 e,
175 READ_MESH nafems-1el0.msh # mesh in millimeters =
LOADING: uniform normal pressure on the upper surface

= BC upper p=1 # 1 Mpa
1.0
] v # BOUNDARY CONDITIONS

BC DCD'C’ v=0
BC ABA'B' u=0
BC BCB'C' u=0 v=0
BC midplane w=0

zero y-di
zero x-di ce
y displ. fixed

s fixed along mid-plane

x
t”-’LUS‘I Units M, KN

LOADING Uniform normal pressure of 1 MPa on the upper
surface of the plate

o W

MATERIAL PROPERTIES: isotropic \gle-material properties
BOUNDARY CONDITIONS Face DCD'C' zero y-displacement E = 210e3 # Y in |
Face ABA'B' zero x-displacement nu=0.3 # P atio
Face BCB'C' x and y displacements fixed,
z displacements fixed along mid-plane SOLVE PROBLEM # ©
MATERIAL PROPERTIES "
Isotropic, E = 210x 103 MPa, v = 0.3 # print the direct stress y at D (and nothing more)
| PRINT "sigma_y @ D = " sigmay(2000,0,300) "MPa"
ELEMENT TYPES Solid hexahedra, wedges and tetrahedra = e G INSERT enUS v~ SoftTabs:2 v UTF-8 v FeenoX v
MESHES B
1.783 Q_ search and Replace [E Current Project
r—
8 . 3x2x2 6xax2
A .~ examples : bash — Konsole <2>
1.583
‘s 1348 @tom:~/feenox/examples$ feenox nafems-1lelO.fee
o] -t signa y @ D = -5.38136 MPa
0.453 -
@tom:~/feenox/=xampless$ ||
2417
ouTPUT Direct Stress Oyy at point D TARGET 5.38 MPa
! vy 1 (mesh retinement) ‘r P —
Figure 1.3: The NAFEMS LE10 problem statement and the corresponding FeenoX input
- etc.

However, she is not obliged to as—at least for simple problems—the defaults are reasonable. This is akin to
writing a text in Markdown where one does not need to care if the page is A4 or letter (as, in most cases,
the output will not be printed but rendered in a web browser).

The problem asks for the normal stress in the y direction o, at point “D,” which is what FeenoX writes
(and nothing else, rule of economy):
|

$ feenox nafems-1el0.fee
sigma y @ D = -5.38016

$

Also note that since there is only one material, there is no need to do an explicit link between material
properties and physical volumes in the mesh (rule of simplicity). And since the properties are uniform and
isotropic, a single global scalar for E and a global single scalar for v are enough.

For the sake of visual completeness, post-processing data with the scalar distribution of o, and the vector
field of displacements [u, v, w] can be created by adding one line to the input file:

‘WRITE_MESH nafems-1el0.vtk sigmay VECTOR u v w

This VTK file can then be post-processed to create interactive 3D views, still screenshots, browser and
mobile-friendly webGL models, etc. In particular, using Paraview one can get a colorful bitmapped PNG
(the displacements are far more interesting than the stresses in this problem).

15

https://www.paraview.org

£ sigmay
R [« -1.6e+01 -10 5 o} 5]‘0].Se‘+01
Figure 1.4: Normal stress o, refined around point D over 5,000x-warped displacements for LE10 created

with Paraview

Figure 1.5: See also https://caeplex.com/r/f1a82f to see this very same LE10 problem solved in the mobile-
friendly web-based interface CAEplex that uses FeenoX as the back end

16

https://caeplex.com/r/f1a82f

1.2.2 The Lorenz chaotic system

Let us consider the famous chaotic Lorenz’s dynamical system. Here is one way of getting an image of the
butterfly-shaped attractor using FeenoX to compute it and Gnuplot to draw it. Solve

i =o-(y—x)

y =z-(r—z)-y

z =uxy—bz
for 0 < t < 40 with initial conditions
z(0) = —11
y(0) = —16
2(0) =225

and 0 = 10, 7 = 28 and b = 8/3, which are the classical parameters that generate the butterfly as
presented by Edward Lorenz back in his seminal 1963 paper Deterministic non-periodic flow.

The following ASCII input file resembles the parameters, initial conditions and differential equations of
the problem as naturally as possible:

PHASE_SPACE x y z # Lorenz 'attractors phase space is x-y-z
end_time = 40 # we go from t=0 to 40 non-dimensional units
sigma = 10 # the original parameters from the 1963 paper
r =28

b =8/3

x 0 =-11 # initial conditions

y 0 = -16

z 0 =22.5

the dynamical system's equations written as naturally as possible
x_dot = sigma*(y - x)

y dot = x*(r - z) -y

z_dot = x*y - b*z

PRINT t x y z # four—column plain-ASCII output

Indeed, when executing FeenoX with this input file, we get four ASCII columns (¢, z, y and z) which we
can then redirect to a file and plot it with a standard tool such as Gnuplot. Note the importance of relying
on plain ASCII text formats both for input and output, as recommended by the Unix philosophy and the
rule of composition: other programs can easily create inputs for FeenoX and other programs can easily
understand FeenoX’s outputs. This is essentially how Unix filters and pipes work.

Note the one-to-one correspondence between the human-friendly differential equations (written in TeX
and rendered as typesetted mathematical symbols) and the computer-friendly input file that FeenoX reads.

Even though the initial version of FeenoX does not provide an API for high-level interpreted languages
such as Python or Julia, the code is written in such a way that this feature can be added without needing a
major refactoring. This will allow to fully define a problem in a procedural way, increasing also flexibility.

17

https://www.seamplex.com/feenox/examples/daes.html#lorenz-attractorthe-one-with-the-butterfly
http://www.gnuplot.info/
http://journals.ametsoc.org/doi/abs/10.1175/1520-0469%281963%29020%3C0130%3ADNF%3E2.0.CO%3B2
(http://www.gnuplot.info/)

15 55730

Figure 1.6: The Lorenz attractor solved with FeenoX and drawn with Gnuplot

18

Chapter 2

Architecture

The tool must be aimed at being executed unattended on remote servers which are expected
to have a mainstream (as of the 2020s) architecture regarding operating system (GNU/Linux
variants and other Unix-like OSes) and hardware stack, such as

« a few Intel-compatible or ARM-like CPUs per host
« a few levels of memory caches

« afew gigabytes of random-access memory

. several gigabytes of solid-state storage

It should successfully run on

« bare-metal
« virtual servers
« containerized images

using standard compilers, dependencies and libraries already available in the repositories of
most current operating systems distributions.

Preference should be given to open source compilers, dependencies and libraries. Small prob-
lems might be executed in a single host but large problems ought to be split through several
server instances depending on the processing and memory requirements. The computational
implementation should adhere to open and well-established parallelization standards.

Ability to run on local desktop personal computers and/laptops is not required but suggested
as a mean of giving the opportunity to users to test and debug small coarse computational
models before launching the large computation on a HPC cluster or on a set of scalable cloud
instances. Support for non-GNU/Linux operating systems is not required but also suggested.

Mobile platforms such as tablets and phones are not suitable to run engineering simulations
due to their lack of proper electronic cooling mechanisms. They are suggested to be used to
control one (or more) instances of the tool running on the cloud, and even to pre and post
process results through mobile and/or web interfaces.

Very much like the C language (after A & B) and Unix itself (after a first attempt and the failed MULTICS),
FeenoX can be seen as a third-system effect:

19

A notorious ‘second-system effect’ often afflicts the successors of small experimental proto-
types. The urge to add everything that was left out the first time around all too frequently
leads to huge and overcomplicated design. Less well known, because less common, is the
‘third-system effect’: sometimes, after the second system has collapsed of its own weight,
there is a chance to go back to simplicity and get it right.

From Eric Raymond’s The Art of Unix Programming

Feenox is indeed the third version written from scratch after a first implementation in 2009 (different small
components with different names) and a second one (named wasora that allowed dynamically-shared
plugins to be linked at runtime to provide particular PDEs) which was far more complex and had far more
features circa 2012-2015. The third attempt, FeenoX, explicitly addresses the “do one thing well” idea from
Unix.

Furthermore, not only is FeenoX itself both free and open-source software but, following the rule of com-
position (sec. B.3), it also is designed to connect and to work with other free and open source software such
as

+ Gmsh for pre and/or post-processing

« ParaView for post-processing

+ Gnuplot for plotting 1D/2D results

« Pyxplot for plotting 1D results

« Pandoc for creating tables and documents
« TeX for creating tables and documents

and many others, which are readily available in all major GNU/Linux distributions.

FeenoX also makes use of high-quality free and open source mathematical libraries which contain numer-
ical methods designed by mathematicians and implemented by professional programmers. In particular,
it depends on

» GNU Scientific Library for general mathematics,

« SUNDIALS IDA for ODEs and DAEs,

« PETSc for linear, non-linear and transient PDEs, and
« SLEPc for PDEs involving eigen problems

Therefore, if one zooms in into the block of the transfer function above, FeenoX can also be seen as a glue
layer between the input files defining a physical problem and the mathematical libraries used to solve the
discretized equations. For example, when solving the linear elastic problem from the NAFEMS LE10 case
discussed above, we can draw the following diagram:

FeenoX

nafems-lel0.geo—> Gmsh |—>nafems-lel0.msh —> — stdout
PETSc

build K and b — — compute o out of u
solve K -u=b

nafems-1el0.fee — —nafems-1lel0.vtk — Paraview

This way, FeenoX bounds its scope to do only one thing and to do it well: to build and solve finite-element
formulations of physical problems. And it does so on high grounds, both ethical and technological:

a. Ethical, since it is free software, all users can

0. run,
1. share,

20

http://www.catb.org/esr/
http://www.catb.org/esr/writings/taoup/
https://www.gnu.org/philosophy/free-sw.en.html
https://opensource.com/resources/what-open-source
http://gmsh.info/
https://www.paraview.org/
http://gnuplot.info/
http://www.pyxplot.org.uk/
https://pandoc.org/
https://tug.org/
https://www.gnu.org/software/gsl/
https://computing.llnl.gov/projects/sundials/ida
https://petsc.org/
http://slepc.upv.es/
https://www.linuxtopia.org/online_books/programming_books/art_of_unix_programming/ch04s03_1.html
https://www.linuxtopia.org/online_books/programming_books/art_of_unix_programming/ch04s03_1.html
https://www.seamplex.com/feenox/examples/mechanical.html#nafems-le10-thick-plate-pressure-benchmark
https://www.gnu.org/philosophy/open-source-misses-the-point.en.html

2. modify, and/or
3. re-share their modifications.

If a user cannot read or write code to make FeenoX suit her needs, at least she has the freedom to
hire someone to do it for her.

b. Technological, since it is open source, advanced users can detect and correct bugs and even improve
the algorithms. Given enough eyeballs, all bugs are shallow.

FeenoX’s main development architecture is Debian GNU/Linux running over 64-bits Intel-compatible pro-
cessors (but binaries for ARM architectures can be compiled as well). All the dependencies are free and/or
open source and already available in Debian’s latest stable official repositories, as explained in sec. 2.1.

The POSIX standard is followed whenever possible, allowing thus FeenoX to be compiled in other operating
systems and architectures such as Windows (using Cygwin) and MacOS. The build procedure is the well-
known and mature ./configure & make command.

FeenoX is written in C conforming to the ISO C99 specification (plus POSIX extensions), which is a stan-
dard, mature and widely supported language with compilers for a wide variety of architectures. As listed
above, for its basic mathematical capabilities, FeenoX uses the GNU Scientific Library. For solving ODEs/-
DAEs, FeenoX relies on Lawrence Livermore’s SUNDIALS library. For PDEs, FeenoX uses Argonne’s
PETSc library and Universitat Politécnica de Valéncia’s SLEPc library. All of them are

« free and open source,

« written in C (neither Fortran nor C++),

+ mature and stable,

« actively developed and updated,

« very well known both in the industry and academia.

Moreover, PETSc and SLEPc are scalable through the MPI standard, further discussed in sec. 2.4. This
means that programs using both these libraries can run on either large high-performance supercomputers
or low-end laptops. FeenoX has been run on

+ Raspberry Pi

« Laptop (GNU/Linux & Windows 10)

» Macbook

+ Desktop PC

« Bare-metal servers

« Vagrant/Virtualbox virtual machines
« Docker/Kubernetes containers

« AWS/DigitalOcean/Contabo instances

Due to the way that FeenoX is designed and the policy separated from the mechanism, it is possible to
control a running instance remotely from a separate client which can eventually run on a mobile device

(fig. 1.2).

The following example illustrates how well FeenoX works as one of many links in a chain that goes from
tracing a bitmap with the problem’s geometry down to creating a nice figure with the results of a compu-
tation.

Say you are Homer J. Simpson and you want to solve a maze drawn in a restaurant’s placemat while driving
to your wife’s aunt funeral. One where both the start and end points are known beforehand as show in
fig. 2.1. In order to avoid falling into the alligator’s mouth, you can exploit the ellipticity of the Laplacian

21

http://www.catb.org/~esr/writings/cathedral-bazaar/cathedral-bazaar/
https://en.wikipedia.org/wiki/Linus%27s_law
https://www.debian.org/
https://www.cygwin.com/
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/C99
https://www.gnu.org/software/gsl/
https://computing.llnl.gov/projects/sundials/ida
https://www.mcs.anl.gov/petsc/
https://www.mcs.anl.gov/petsc/
https://slepc.upv.es/
https://www.mcs.anl.gov/research/projects/mpi/standard.html
https://en.wikipedia.org/wiki/Homer_Simpson
https://en.wikipedia.org/wiki/Selma%27s_Choice
https://en.wikipedia.org/wiki/Selma%27s_Choice

Figure 2.1: Homer trying to solve a maze on a placemat during season four.

operator to solve any maze (even a hand-drawn one) without needing any fancy Al or ML algorithm. Just
FeenoX and a bunch of standard open source tools to convert a bitmapped picture of the maze into an
unstructured mesh.

1. Go to http://www.mazegenerator.net/
2. Create a maze

3. Download it in PNG (fig. 2.2a)

4. Perform some conversions

« PNG — PNM — SVG — DXF — GEO

$ wget http://www.mazegenerator.net/static/orthogonal maze with 20 by 20 cells.png
$ convert orthogonal maze with 20 by 20 cells.png -negate maze.png

$ potrace maze.pnm --alphamax 0 --opttolerance 0 -b svg -0 maze.svg
$./svg2dxf maze.svg maze.dxf
$./dxf2geo maze.dxf 0.1

5. Open it with Gmsh

22

https://en.wikipedia.org/wiki/Selma%27s_Choice
http://www.mazegenerator.net/

start

/

end

(a) Bitmapped maze from https://www.mazegenerator.net (left) and 2D mesh (right)

(b) Solution to found by FeenoX (and drawn by Gmsh)

Figure 2.2: Bitmapped, meshed and solved mazes.

23

https://www.mazegenerator.net

Select hole boundaries (if none, press ‘')
[Press e’ to end selection or ‘g’ to abort]

A H =)
L —iin_j%,
E jl‘;—ﬁl

Ek —
S

Soxvzoas Done reading ‘maze geo'

+ Add a surface
« Set physical curves for “start” and “end”

6. Mesh it (fig. 2.2a)

| |
gmsh -2 maze.geo

7. Solve V2¢ = 0 with BCs

o=0 at “start”
o=1 at “end”
Vit =0 everywhere else

PROBLEM laplace 2D # prelty self-descriptive, isn't it?
READ_MESH maze.msh

boundary conditions (default is homogeneous Neumann)
BC start phi=0
BC end phi=1

SOLVE_PROBLEM

write the norm of gradient as a scalar field
and the gradient as a 2d vector into a .msh file
WRITE_MESH maze-solved.msh \
sqrt(dphidx(x,y)”2+dphidy(x,y)”"2) \
VECTOR dphidx dphidy 0

$ feenox maze.fee

$

8. Open maze-solved.msh, go to start and follow the gradient V¢!

2.1 Deployment

The tool should be easily deployed to production servers. Both

24

O W W W W W

Figure 2.3: Any arbitrary maze (even hand-drawn) can be solved with FeenoX

25

a. an automated method for compiling the sources from scratch aiming at obtaining
optimized binaries for a particular host architecture should be provided using a
well-established procedures, and

b. one (or more) generic binary version aiming at common server architectures should be
provided.

Either option should be available to be downloaded from suitable online sources, either by real
people and/or automated deployment scripts.

As already stated, FeenoX can be compiled from its sources using the well-established configure & make
procedure. The code’s source tree is hosted on Github so cloning the repository is the preferred way to
obtain FeenoX, but source tarballs are periodically released too according to the requirements in sec. 4.1.
There are also non-official binary .deb packages which can be installed with apt using a custom package
repository location.

The configuration and compilation is based on GNU Autotools that has more than thirty years of maturity
and it is the most portable way of compiling C code in a wide variety of Unix variants. It has been tested
with

« GNU C compiler (free)
« LLVM Clang compiler (free)
« Intel oneAPI C compiler (privative)

FeenoX depends on the four open source libraries stated in sec. 2, although the last three of them are
optional. The only mandatory library is the GNU Scientific Library which is part of the GNU/Linux oper-
ating system and as such is readily available in all distributions as libgsi-dev. The sources of the rest of the
optional libraries are also widely available in most common GNU/Linux distributions.

In effect, doing

sudo apt-get install gcc make libgsl-dev libsundials-dev petsc-dev slepc-dev

is enough to provision all the dependencies needed compile FeenoX from the source tarball with the full
set of features. If using the Git repository as a source, then Git itself and the GNU Autoconf and Automake
packages are also needed:

| |
sudo apt-get install git autoconf automake
| \

Even though compiling FeenoX from sources is the recommended way to obtain the tool—since the target
binary can be compiled using particularly suited compilation options, flags and optimizations (especially
those related to MPL linear algebra kernels and direct and/or iterative sparse solvers)—-there are also tarballs
and .deb packages with usable binaries for some of the most common architectures—including some non-
GNU/Linux variants. These binary distributions contain statically-linked executable files that do not need
any other shared libraries to be installed on the target host. However, their flexibility and efficiency is
generic and far from ideal. Yet the flexibility of having an execution-ready distribution package for users
that do not know how to compile C source code outweighs the limited functionality and scalability of the
tool.

For example, first PETSc can be built with a -ofast flag:

TGS
$ cd $PETSC DIR
$ export PETSC ARCH=linux-fast

https://www.gnu.org/software/automake/manual/html_node/Autotools-Introduction.html
https://gcc.gnu.org/
http://clang.org/
https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-compiler.html
https://git-scm.com/
https://www.gnu.org/software/autoconf/
https://www.gnu.org/software/automake/

$./configure --with-debug=0 COPTFLAGS=
$ make -j8

$ cd $HOME

And then not only can FeenoX be configured to use that particular PETSc build but also to use a different
compiler such as Clang instead of GNU GCC and to use the same -ofast flag to compile FeenoX itself:

|
$ git clone https://github.com/seamplex/feenox

cd feenox

./autogen.sh

export PETSC_ARCH=1linux-fast

./configure MPICH CC=clang CFLAGS=-0Ofast
make -j8

make install

If one does not care about the details of the compilation, then a pre-compiled statically-linked binary can
be directly downloaded very much as when downloading Gmsh:

|
$ wget http://gmsh.info/bin/Linux/gmsh-Linux64.tgz

$ wget https://seamplex.com/feenox/dist/linux/feenox-linux-amd64.tar.gz

Appendix sec. D has more details about how to download and compile FeenoX. The full online documen-
tation contains a compilation guide with further detailed explanations of each of the steps involved.

All the commands needed to either download a binary executable or to compile from source with cus-
tomized optimization flags can be automated. The repository contains a subdirectory dist with instructions
and scripts to build

« source tarballs
« binary tarballs
« Debian-compatible .deb packages

This way, deployment of the solver can be customized and tweaked as needed, including creating Docker
containers with a working version of FeenoX.

2.2 Execution

It is mandatory to be able to execute the tool remotely, either with a direct action from the
user or from a high-level workflow which could be triggered by a human or by an automated
script. Since it is required for the tool to be able to be run distributed among different servers,
proper means to perform this kind of remote executions should be provided. The calling party
should be able to monitor the status during run time and get the returned error level after
finishing the execution.

The tool shall provide means to perform parametric computations by varying one or more
problem parameters in a certain prescribed way such that it can be used as an inner solver for
an outer-loop optimization tool. In this regard, it is desirable that the tool could compute scalar
values such that the figure of merit being optimized (maximum temperature, total weight, total
heat flux, minimum natural frequency, maximum displacement, maximum von Mises stress,
etc.) is already available without needing further post-processing.

27

https://seamplex.com/feenox/doc/compilation.html
https://github.com/seamplex/feenox/tree/main/dist

As requested by the SRS and explained in sec. 1.2, FeenoX is a program that reads the problem to be solved
at run-time and not a library that has to be linked against code that defines the problem. Since FeenoX is
designed to run as

« a Unix filter, or
+ as a transfer function between input and output files

and it explicitly avoids having a graphical interface, the binary executable works as any other Unix terminal
command. Moreover, as discussed in sec. 2.4, FeenoX uses the MPI standard for parallelization among
several hosts. Therefore, it can be launched through the command mpiexec (or mpirun).

When invoked without arguments, it prints its version (a thorough explanation of the versioning scheme
is given in sec. 4.1), a one-line description and the usage options:
[

$ feenox
FeenoX v1.0.8-g731ca5d
a cloud-first free no-fee no-X uniX-like finite-element(ish) computational engineering tool

usage: feenox [options] inputfile [replacement arguments] [petsc options]

-h, --help display options and detailed explanations of command-line usage

-v, --version display brief version information and exit

-V, --versions display detailed version information

-c, --check validates if the input file is sane or not

- -pdes list the types of PROBLEMs that FeenoX can solve, one per line
--elements_info output a document with information about the supported element types
--linear force FeenoX to solve the PDE problem as linear

--non-linear force FeenoX to solve the PDE problem as non-linear

Run with --help for further explanations.
$

The program can also be executed remotely either

a. on a running server through a SSH session
« in serial directly invoking the feenox binary
« in parallel through the mpiexec wrapper, e.g.

| |
mpiexec -n 4 feenox input.fee
| \

b. spawned by a daemon listening to a network requests,
c. in a container as part of a provisioning script,
d. in many other ways.

As explained in the help message, FeenoX can read the input from the standard input if - is specified as
the input path. This is useful in scripts where small calculations are needed, e.g.

|
$ a=3
$ echo "PRINT 1/$a" | feenox -

0.333333
$

FeenoX provides mechanisms to inform its progress by writing certain information to devices or files,
which in turn can be monitored remotely or even trigger server actions. Progress can be as simple as an
ASCII bar (triggered with --progress in the command line or with the keyword procress in the input file) to

28

https://www.mpich.org/static/docs/v3.0.x/www1/mpiexec.html
https://stackoverflow.com/questions/25287981/mpiexec-vs-mpirun
https://en.wikipedia.org/wiki/Secure_Shell
https://en.wikipedia.org/wiki/OS-level_virtualization
https://www.seamplex.com/feenox/doc/feenox-manual.html#problem

more complex mechanisms like writing the status in a shared memory segment. Fig. 2.4 shows how the
CAEplex platform shows the progress interactively in its web-based interface.

rove = Holed plated e © &0 @0 Do Py . P p—

Building stiffness matrix

Solving for displacements

Computing stress tensor

CPU time :: 12/1000 s

o

e [e Do

Figure 2.4: ASCII progress bars parsed and converted into a web-based interface

Regarding its execution, there are three ways of solving problems:

1. direct execution
2. parametric runs, and
3. optimization loops.

2.2.1 Direct execution

When directly executing FeenoX, one gives a single argument to the executable with the path to the main
input file. For example, the following input computes the first twenty numbers of the Fibonacci sequence
using the closed-form formula

where ¢ = (14 1/5)/2 is the Golden ratio:

the Fibonacci sequence using the closed-form formula as a function
phi = (1+sqrt(5))/2

f(n) = (phi*n - (1-phi)”~n)/sqrt(5)

PRINT_FUNCTION f MIN 1 MAX 20 STEP 1

FeenoX can be directly executed to print the function f(n) for n = 1,...,20 both to the standard output
and to a file named one (because it is the first way of solving Fibonacci with Feenox):

|
feenox fibo formula.fee | tee one

$
1
2
3
4
5
6
7

29

https://www.caeplex.com
https://en.wikipedia.org/wiki/Fibonacci_number
https://en.wikipedia.org/wiki/Golden_ratio

Now, we could also have computed these twenty numbers by using the direct definition of the sequence
into a vector f of size 20. This time we redirect the output to a file named two:

the fibonacci sequence as a vector
VECTOR f SIZE 20

flil<l:2> =1
fli]l<3:vecsize(f)> = f[i-2] + f[i-1]

PRINT_VECTOR i f

$ feenox fibo vector.fee > two

$

Finally, we print the sequence as an iterative problem and check that the three outputs are the same:

the fibonacci sequence as an iterative problem

static steps = 20
#static_iterations = 1476 # limit of doubles

IF step static=1|step static=2

fn=1
f_nminusl =1
f nminus2 =1
ELSE

f n=Ff nminusl + f nminus2
f _nminus2 = f nminusl
f_nminusl = f_n

ENDIF

PRINT step static f_n

$ feenox fibo iterative.fee > three
$ diff one two

$ diff two three
$

These three calls were examples of direct execution of FeenoX: a single call with a single argument to solve
a single fixed problem.

30

2.2.2 Parametric

To use FeenoX in a parametric run, one has to successively call the executable passing the main input file
path in the first argument followed by an arbitrary number of parameters. These extra parameters will be
expanded as string literals $1, $2, etc. appearing in the input file. For example, if hello. fee is

PRINT "Hello $1!"

then

$ feenox hello.fee World
Hello World!

$ feenox hello.fee Universe
Hello Universe!
$

To have an actual parametric run, an external loop has to successively call FeenoX with the parametric ar-
guments. For example, say this file cantilever. fee fixes the face called “left” and sets a load in the negative z
direction of a mesh called cantilever-$1-$2.msh. The output is a single line containing the number of nodes
of the mesh and the displacement in the vertical direction w(500, 0, 0) at the center of the cantilever’s free
face:

PROBLEM elastic 3D
READ_MESH cantilever-$1-$2.msh # in meters

3

E = 2.1ell Young modulus in Pascals
nu=0.3 # Poisson's ratio

BC left fixed
BC right tz=-1le5 # traction in Pascals, negative z

SOLVE_PROBLEM

z-displacement (components are u,v,w) at the tip vs. number of nodes
PRINT nodes w(500,0,0) "\# $1 $2"

Now the following Bash script first calls Gmsh to create the meshes cantilever-${element}-${c}.msh where

o ${element}: tet4, tet10, hex8, hex20, hex27
e ${c}: 1,2,...,10

It then calls FeenoX with the input above and passes ${element} and ${c} as extra arguments, which then
are expanded as $1 and $2 respectively.

#!/bin/bash

rm -f *.dat
for element in tet4 tetl® hex8 hex20 hex27; do
for c in $(seq 1 10); do

create mesh if not already cached
mesh=cantilever-${element}-${c}
if [! -e ${mesh}.msh]; then
scale=$(echo "PRINT 1/${c}" | feenox -)
gmsh -3 -v 0 cantilever-${element}.geo -clscale ${scale} -o ${mesh}.msh
fi

call FeenoX
feenox cantilever.fee ${element} ${c} | tee -a cantilever-${element}.dat

31

https://en.wikipedia.org/wiki/Bash_(Unix_shell)

(a) Tetrahedra

Y\)/x

(b) Hexahedra

Figure 2.5: Cantilevered beam meshed with structured tetrahedra and hexahedra

32

done
done

After the execution of the script, thanks to the design decision (explained in sec. 3.2) that output is 100%
defined by the user (in this case with the PRINT instruction), one has several files cantilever-${element +
}.dat files. When plotted, these show the shear locking effect of fully-integrated first-order elements as
illustrated in fig. 2.6. The theoretical Euler-Bernoulli result is just a reference as, among other things, it
does not take into account the effect of the material’s Poisson’s ratio. Note that the abscissa shows the
number of nodes, which are proportional to the number of degrees of freedom (i.e. the size of the problem
matrix) and not the number of elements, which is irrelevant here and in most problems.

0 &

- Euler-Bernoulli

L - Tetd

b -l Hex8

-/ Tet10

- I -8~ Hex20
T i | ‘ —-©- Hex27
2 I
z A
5)
g r o
8 —4 T A
E —4x1074 f
2 A
= ' 1 [

I “uwxm.%%m%m

_ B -

- .,._..._...,E.,.__.___A__,._é e s I - W A D
) |) T) |) R | L L—>

100 300 1000 3000 10000 30000

Number of nodes

Figure 2.6: Displacement at the free tip of a cantilevered beam vs. number of nodes for different element
types

2.2.3 Optimization loops

Optimization loops work very much like parametric runs from the FeenoX point of view. The difference
is mainly on the calling script that has to implement a certain optimization algorithm such as conjugate
gradients, Nelder-Mead, simulated annealing, genetic algorithms, etc. to choose which parameters to pass
to FeenoX as command-line argument. The only particularity on FeenoX’s side is that since the next
argument that the optimization loop will pass might depend on the result of the current step, care has
to be taken in order to be able to return back to the calling script whatever results it needs in order to
compute the next arguments. This is usually just the scalar being optimized for, but it can also include
other results such as derivatives or other relevant data.

To illustrate how to use FeenoX in an optimization loop, let us consider the problem of finding the length ¢;
of a tuning fork (fig. 2.7) such that the fundamental frequency on a free-free oscillation is equal to the base A
frequency at 440 Hz.

33

https://www.seamplex.com/feenox/doc/feenox-manual.html#print
https://en.wikipedia.org/wiki/Euler%E2%80%93Bernoulli_beam_theory
https://en.wikipedia.org/wiki/Poisson%27s_ratio
https://en.wikipedia.org/wiki/Conjugate_gradient_method
https://en.wikipedia.org/wiki/Conjugate_gradient_method
https://en.wikipedia.org/wiki/Nelder%E2%80%93Mead_method
https://en.wikipedia.org/wiki/Simulated_annealing
https://en.wikipedia.org/wiki/Genetic_algorithm

Figure 2.7: What length /; is needed so the fork vibrates at 440 Hz?

This extremely simple input file (rule of simplicity sec. B.5) solves the free-free mechanical modal problem
(i.e. without any Dirichlet boundary condition) and prints the fundamental frequency:

PROBLEM modal 3D MODES 1 # only one mode needed

READ_MESH fork.msh # in [m]

E = 2.07ell # in [Pa]

nu = 0.33

rho = 7829 # in [kg/m"2]

no BCs! It is a free-free vibration problem
SOLVE_PROBLEM

write back the fundamental frequency to stdout
PRINT f(1)

Note that in this particular case, the FeenoX input files does not expand any command-line argument. The
trick is that the mesh file fork.msh is overwritten in each call of the optimization loop. Since this time the
loop is slightly more complex than in the parametric run of the last section, we now use Python. The
function create mesh() first creates a CAD model of the fork with geometrical parameters r, w, ¢1 and £s.
It then meshes the CAD using n structured hexahedra through the fork’s thickness. Both the CAD and
the mesh are created using the Gmsh Python API The detailed steps between gmsh.initialize() and gmsh <
.finalize() are not shown here, just the fact that this function overwrites the previous mesh and always
writes it into the file called fork.msh which is the one that fork.fee reads. Hence, there is no need to pass
command-liner arguments to FeenoX. The full implementation of the function is available in the examples
directory of the FeenoX distribution.

import math
import gmsh
import subprocess # to call FeenoX and read back

def create mesh(r, w, 11, 12, n):
gmsh.initialize()

34

gmsh.write("fork.msh")
gmsh.finalize()
return len(nodes)

def main():

target = 440 # target frequency

eps = le-2 # tolerance

r=4.2e-3 # geometric parameters

w = 3e-3

11 = 30e-3

12 = 60e-3

for n in range(1,7): # mesh refinement level
11 = 60e-3 # restart 11 & error
error = 60
while abs(error) > eps: # loop

11 = 11 - le-4*error

mesh with Gmsh Python API

nodes = create mesh(r, w, 11, 12, n)

call FeenoX and read scalar back

TODO: FeenoX Python API (like Gmsh)

result = subprocess.run(['feenox', 'fork.fee'], stdout=subprocess.PIPE)
freq = float(result.stdout.decode('utf-8"'))

error = target - freq

print(nodes, 11, freq)

Since the computed frequency depends both on the length ¢; and on the mesh refinement level n, there
are actually two nested loops: one parametric over n = 1,2...,7 and the optimization loop itself that
tries to find ¢; so as to obtain a frequency equal to 440 Hz within 0.01% of error.

|

$ python fork.py > fork.dat

$

Note that the approach used here is to use Gmsh Python API to build the mesh and then fork the FeenoX
executable to solve the fork (no pun intended). There are plans to provide a Python API for FeenoX so the
problem can be set up, solved and the results read back directly from the script instead of needing to do a
fork+exec, read back the standard output as a string and then convert it to a Python float.

Fig. 2.8 shows the results of the combination of the optimization loop over ¢; and a parametric run over n.
The difference for n = 6 and n = 7 is in the order of one hundredth of millimeter.

2.3 Efficiency

As required in the previous section, it is mandatory to be able to execute the tool on one or
more remote servers. The computational resources needed from this server, i.e. costs measured
in

« CPU/GPU time

+ random-access memory

+ long-term storage
. etc.

needed to solve a problem should be comparable to other similar state-of-the-art cloud-based
script-friendly finite-element tools.

35

67.1
67

66.9

0y [mm]

66.8

66.7

1 1 - 1 1 1 1 1 1 1 Y| 1 1 1 1 1 1y

1000 2000 5000 10000 20000 50000

Number of nodes

Figure 2.8: Estimated length ¢; needed to get 440 Hz for different mesh refinement levels n

One of the most widely known quotations in computer science is that one that says “premature optimiza-
tion is the root of all evil” that is an extremely over-simplified version of Donald E. Knuth’s analysis in
his The Art of Computer Programming. Bottom line is that the programmer should not not spend too
much time trying to optimize code based on hunches but based on profiling measurements. Yet a disci-
plined programmer can tell when an algorithm will be way too inefficient (say something that scales up
like O(n?)) and how small changes can improve performance (say by understanding how caching levels
work in order to implement faster nested loops). It is also true that usually an improvement in one aspect
leads to a deterioration in another one (e.g. a decrease in CPU time by caching intermediate results in an
increase of RAM usage).

Even though FeenoX is still evolving so it could be premature in many cases, it is informative to compare
running times and memory consumption when solving the same problem with different cloud-friendly
FEA programs. In effect, a serial single-thread single-host comparison of resource usage when solving
the NAFEMS LE10 problem introduced above was performed, using both unstructured tetrahedral and
structured hexahedral meshes. Fig. 2.9 shows two figures of the many ones contained in the detailed
report. In general, FeenoX using the iterative approach based on PETSc’s Geometric-Algebraic Multigrid
Preconditioner and a conjugate gradients solver is faster for (relatively) large problems at the expense of a
larger memory consumption. The curves that use MUMPS confirm the well-known theoretical result that
direct linear solvers are robust but not scalable.

Regarding storage, FeenoX needs space to store the input file (negligible), the mesh file in .msh format
(which can be either ASCII or binary) and the optional output files in .msh or .vtu/.vtk formats. All of
these files can be stored gzip-compressed and un-compressed on demand by exploiting FeenoX’s script-
friendliness using proper calls to gzip before and/or after calling the feenox binary.

36

https://en.wikipedia.org/wiki/Donald_Knuth
https://en.wikipedia.org/wiki/The_Art_of_Computer_Programming
https://seamplex.com/feenox/tests/nafems/le10/
https://seamplex.com/feenox/tests/nafems/le10/
https://www.seamplex.com/feenox/tests/nafems/le10/report-tet.html
https://www.seamplex.com/feenox/tests/nafems/le10/report-hex.html

feenox gamg e aster cholesky —&— calculix cholesky reflex gamg
feenox mumps = > = aster default —-£J--- calculix diagonal reflex hypre
sparselizard mumps = X = aster mumps - -X- - calculix spooles reflex mumps
10000 T T =
1000 — e
N D
= I P Ce
S | .
i b
OJ
£ 100 |-
3 i
= B
=]
|
100000
3 Total degrees of freedom
(a) Wall time vs. number of degrees of freedom
feenox gamgQ e aster cholesky —&— calculix cholesky reflex gamg
feenox mumps = > = aster default —-£J--- calculix diagonal reflex hypre
sparselizard mumps = <= aster mumps - -X- - calculix spooles reflex mumps
%108 ‘ ‘ —_——— ‘ ‘ ‘ —————
L - i
i -)
X107 -
= L
=
2 1x108 |- —
= F 3
OJ - 4
s L]
i & Vur-%,'—'("/"ii i
100000 | -
10000
100000
Total degrees of freedom

Figure 2.9: Resource consumption when solving the NAFEMS LE10 problem in the cloud for tetrahedral

meshes.

(b) Memory vs. number of degrees of freedom

37

2.4 Scalability

The tool ought to be able to start solving small problems first to check the inputs and outputs
behave as expected and then allow increasing the problem size up in order to achieve to the
desired accuracy of the results. As mentioned in sec. 2, large problem should be split among
different computers to be able to solve them using a finite amount of per-host computational
power (RAM and CPU).

When for a fixed problem the mesh is refined over and over, more and more computational resources are
needed to solve it (and to obtain more accurate results, of course). Parallelization can help to

a. reduce the wall time needed to solve a problem by using several processors at the same time
b. allow to solve big problems that would not fit into a single computer by splitting them into smaller
parts, each of them fitting in a single computer

There are three types of parallelization schemes:
Shared-memory systems (OpenMP) several processing units sharing a single memory address space

Distributed systems (MPI) several computational units, each with their own processing units and mem-
ory, inter-connected with high-speed network hardware

Graphical processing units (GPU) used as co-processors to solve numerically-intensive problems

In principle, any of these three schemes can be used to reduce the wall time (a). But only the distributed
systems scheme allows to solve arbitrarily big problems (b).

It might seem that the most effective approach to solve a large problem is to use OpenMP (not to be
confused with OpenMPI!) among threads running in processors that share the memory address space and
to use MPI among processes running in different hosts. But even though this hybrid OpenMP+MPI scheme
is possible, there are at least three main drawbacks with respect to a pure MPI approach:

i. the overall performance is not be significantly better
ii. the amount of lines of code that has to be maintained is more than doubled
iii. the number of possible points of synchronization failure increases

In many ways, the pure MPI mode has fewer synchronizations and thus should perform better. Hence,
FeenoX uses MPI (mainly through PETSc and SLEPc) to handle large parallel problems.

To illustrate FeenoX’s MPI features, let us consider the following input file (which is part of FeenoX’s tests
suite):

‘PRINTF_ALL "Hello MPI World!"

The instruction PRINTF_ALL (at the end of the day, it is a verb) asks all the processes to write the printf «+
-formatted arguments in the standard output. A prefix is added to each line with the process id and the
name of the host. When running FeenoX with this input file through mpiexec in an AWS server which has
already been properly configured to connect to another one and split the MPI processes, we get:

|

ubuntu@ip-172-31-44-208:~/mpi/hello$ mpiexec --verbose --oversubscribe --hostfile hosts -np 4 ./feenox <
hello mpi.fee
[0/4 ip-172-31-44-208] Hello MPI World!

[1/4 ip-172-31-44-208] Hello MPI World!
[2/4 ip-172-31-34-195] Hello MPI World!
[3/4 ip-172-31-34-195] Hello MPI World!

38

ubuntu@ip-172-31-44-208:~/mpi/hello$

That is to say,host ip-172-31-44-208 spawns two local processes feenox and, at the same time, asks host ip +
-172-31-34-195 to create two new processes in it. This scheme would allow to solve a problem in parallel
where the CPU and RAM loads are split into two different servers.

Figure 2.10: Gmsh’s tutorial t21: two squares decomposed in 6 partitions.

We can used Gmsh’s tutorial t21 that illustrated the concept of domain decomposition (DDM) to show
another aspect of how MPI parallelization works in FeenoX. In effect, let us consider the mesh from fig. 2.10
that consists of two non-dimensional squares of size 1 x 1 and let us say we want to compute the integral
of the constant 1 over the surface to obtain the numerical result 2.

READ_MESH t21.msh
INTEGRATE 1 RESULT two
PRINTF_ALL "%g" two

In this case, the instruction INTEGRATE is executed in parallel where each process computes the local contri-
bution and, before moving into the next instruction (PRINTF_ALL), all processes synchronize and sum up all
these contributions (i.e. they perform a sum reduction) and all the processes obtain the global result in the
variable two:

| $ mpiexec -n 2 feenox t21.fee
[0/2 tom] 2
[1/2 tom] 2
$ mpiexec -n 4 feenox t21.fee
[0/4 tom] 2
[1/4 tom] 2

[2/4 tom] 2
[3/4 tom] 2
$ mpiexec -n 6 feenox t21.fee
[0/6 tom] 2
[1/6 tom] 2
[2/6 tom] 2
[3/6 tom] 2

39

[4/6 tom] 2
[5/6 tom] 2

$
|

To illustrate what is happening under the hood, let us temporarily modify the FeenoX source code so that

each process shows the local contribution:

|
$ mpiexec -n 2

[process 0] my
[process 1] my
[0/2 tom] 2
[1/2 tom] 2

$ mpiexec -n 3
[process 0] my
[process 1] my
[process 2] my
[0/3 tom] 2
[1/3 tom] 2
[2/3 tom] 2

$ mpiexec -n 4
[process 0] my
[process 1] my
[process 2] my
[process 3] my
[06/4 tom] 2
[1/4 tom] 2
[2/4 tom] 2
[3/4 tom] 2

$ mpiexec
[process 0]
[process 1]
[process 2]
[process 3]
[process 4]
[0/5 tom] 2
[1/5 tom]

[2/5 tom]

[3/5 tom]

[4/5 tom]

$ mpiexec
[process
[process
[process
[process
[process
[process

[0/6 tom]

[1/6 tom]

[2/6 tom]

[3/6 tom]

[4/6 tom]

[5/6 tom]

$
|

feenox t21.fee
local integral
local integral

feenox t21.fee

is 0.996699

is

local integral i
local integral i
local integral i

feenox t21.fee

local integral i
local integral i
local integral i
local integral i

feenox t21.fee

local integral i
local integral i
local integral i
local integral i
local integral i

feenox t21.fee

local integral i
local integral i
local integral i
local integral i
local integral i
local integral i

i

0033

.658438
.672813
.668749

.505285
.496811
.500788
.497116

.403677
.401883
.399116
.400042
.395281

.327539
.330899
.338261
.334552
.332716
.336033

Note that in the cases with 4 and 5 processes, the number of partitions P is not a multiple of the number
of processes N. Anyway, FeenoX is able to distribute the load is able to distribute the load among the N
processes, even though the efficiency is slightly less than in the other cases. ::

When solving PDEs, FeenoX builds the local matrices and vectors and then asks PETSc to assemble the
global objects by sending non-local information as MPI messages. This way, all processes have contiguous
rows as local data and the system of equations can be solved in parallel using the distributed system
paradigm.

We can show that both

a. the wall time, and
b. the per-process memory

decrease when running a fixed-sized problem with MPI in parallel using the IAEA 3D PWR benchmark:

PROBLEM neutron_diffusion 3D GROUPS 2

DEFAULT_ARGUMENT_VALUE 1 quarter
READ_MESH iaea-3dpwr-$1.msh

MATERIAL fuell D1=1.
MATERIAL fuel2 D1=1.

1.5 0 .2=0.02 Sigma al=0.01 Sigma a2=0.08 nuSigma f2=0.135
1.5 0
MATERIAL fuel2rod D1=1.5 D2=0.
2.0 0
2.0 0

4 1.2=0.0

4 s1.2=0.02 Sigma_al=0.01 Sigma a2=0.085 nuSigma f2=0.135

4 Sigma_s1.2=0.02 Sigma_al=0.01 Sigma_a2=0.13 nuSigma_f2=0.135
MATERIAL reflector D1= 3 1.2=0.0
MATERIAL reflrod D1=2. 3 1.2=0.0

Sigma_s1.2=0.04 Sigma_al=0 Sigma_a2=0.01 nuSigma_f2=0
.2=0.04 Sigma_al=0 Sigma_a2=0.055 nuSigma f2=0

BC vacuum vacuum=0.4692
BC mirror mirror

SOLVE_PROBLEM
WRITE_RESULTS FORMAT vtk

PRINT ‘'geometry = $1"

PRINTF " keff = %.5f" keff

PRINTF " nodes = %g" nodes

PRINTF " DOFs = %g" total dofs

PRINTF " memory = %.1f Gb (local) %.1f Gb (global)" mpi_memory local() mpi_memory_global()
PRINTF " wall = %.1f sec" wall_time()

$ mpiexec -n 1 feenox iaea-3dpwr.fee quarter
geometry quarter
keff = 1.02918
nodes = 70779
DOFs = 141558
[0/1 tux] memory = 2.3 Gb (local) 2.3 Gb (global)
wall = 26.2 sec
$ mpiexec -n 2 feenox iaea-3dpwr.fee quarter
geometry = quarter
keff = 1.02918
nodes 70779
DOFs = 141558
[0/2 tux] memory = 1.5 Gb (local) 3.0 Gb (global)
[1/2 tux] memory 1.5 Gb (local) 3.0 Gb (global)
wall = 17.0 sec
$ mpiexec -n 4 feenox iaea-3dpwr.fee quarter
geometry = quarter
keff = 1.02918
nodes = 70779
DOFs = 141558
[0/4 tux] memory = 1.0 Gb (local) 3.9 Gb (global)
[1/4 tux] memory = 0.9 Gb (local) 3.9 Gb (global)
[2/4 tux] memory 1.1 Gb (local) 3.9 Gb (global)
[3/4 tux] memory = 0.9 Gb (local) 3.9 Gb (global)

41

wall = 13.0 sec

2.5 Flexibility

The tool should be able to handle engineering problems involving different materials with
potential spatial and time-dependent properties, such as temperature-dependent thermal ex-
pansion coeflicients and/or non-constant densities. Boundary conditions must be allowed to
depend on both space and time as well, like non-uniform pressure loads and/or transient heat
fluxes.

The third-system effect mentioned in sec. 2 involves more than ten years of experience in the nuclear
industry,! where complex dependencies of multiple material properties over space through intermediate
distributions (temperature, neutronic poisons, etc.) and time (control rod positions, fuel burn-up, etc.)
are mandatory. One of the cornerstone design decisions in FeenoX is that everything is an expression
(sec. 3.1.5). Here, “everything” means any location in the input file where a numerical value is expected.
The most common use case is in the pRINT keyword. For example, the Sophomore’s dream (in contrast to
Freshman’s dream) identity

1 oo
/ z %dx = Z n~"
0 n=1

can be illustrated like this:

VAR x

PRINT %.7f integral(x~(-x),x,0,1)
VAR n

PRINT %.7f sum(n~(-n),n,1,1000)

$ feenox sophomore.fee
1.2912861

1.2912860

$

Of course most engineering problems will not need explicit integrals—although a few of them do—but
some might need summation loops, so it is handy to have these functionals available inside the FEA tool.
This might seem to go against the “keep it simple” and “do one thing good” Unix principle, but definitely
follows Alan Kay’s idea that “simple things should be simple, complex things should be possible” (further
discussion in sec. 3.1.4).

Flexibility in defining non-trivial material properties is illustrated with the following example, where two
squares made of different dimensionless materials are juxtaposed in thermal contact (glued?) and subject
to different boundary conditions at each of the four sides (fig. 2.11).

The yellow square is made of a certain material with a conductivity that depends algebraically (and ficti-
tiously) the temperature like

1
kyellow(xa y) = 5 + T(IE7 y)

!"This experience also shaped many of the features that FeenoX has and most of the features is does deliberately not have.

42

https://www.seamplex.com/feenox/doc/feenox-manual.html#print
https://en.wikipedia.org/wiki/Sophomore%27s_dream
https://en.wikipedia.org/wiki/Freshman%27s_dream
https://en.wikipedia.org/wiki/Alan_Kay

Figure 2.11: Two non-dimensional 1 x 1 squares each in thermal contact made of different materials.

The cyan square has a space-dependent temperature given by a table of scattered data as a function of
the spatial coordinates = and y (origin is left bottom corner of the yellow square) without any particular
structure on the definition points:

r Yy keyan(z,y)
1 0 1.0
11 1.5

2 0 1.3

2 1 1.8
15 05 1.7

The cyan square generates a temperature-dependent power density (per unit area) given by

qé/yan('r7 y) =02 T(xv y)

The yellow one does not generate any power so q;,’enow = (. Boundary conditions are

)=y at the left edge y = 0
)=1-—cos <§7r : a:) at the bottom edge x = 0
)=2-y at the right edge x = 2
)=1 at the top edgey = 1

The input file illustrate how flexible FeenoX is and, again, how the problem definition in a format that the
computer can understand resembles the humanly-written formulation of the original engineering problem:

PROBLEM thermal 2d # heat conduction in two dimensions
READ_MESH two-squares.msh

k yellow(x,y) = 1/2+T(x,y) # thermal conductivity
FUNCTION k cyan(x,y) INTERPOLATION shepard DATA {

43

1 0 1.0

1 1 1.5

2 0 1.3

2 1 1.8

1.50.5 1.7 }
g _cyan(x,y) = 1-0.2*T(x,y) # dissipated power density
g _yellow(x,y) = 0

H

BC left T=y

BC bottom T=1-cos(pi/2*x)
BC right g=2-y # heat flux (neumann) bc
BC top g=1

temperature (dirichlet) bc

SOLVE_PROBLEM
WRITE_MESH two-squares-results.msh T #CELLS k

Note that FeenoX is flexible enough to...

1. handle mixed meshes (the yellow square is meshed with triangles and the other one with quadran-
gles)

2. use point-wise defined properties even though there is not underlying structure nor topology for
the points where the data is defined (FeenoX could have read data from a .msh or .vtk file respecting
the underlying topology)

3. understand that the problem is non-linear so as to use PETSc’s SNES framework automatically (the
conductivity and power source depend on the temperature).

In the very same sense that variables x, y and z appearing in the input refer to the spatial coordinates x, y
and z respectively, the special variable t refers to the time ¢. The requirement of allowing time-dependent
boundary conditions can be illustrated by solving the NAFEMS T3 one-dimensional transient heat transfer
benchmark. It consists of a slab of 0.1 meters long subject to a fixed homogeneous temperature on one
side, i.e.

and to a transient temperature

Tt
T(x =0.1m,t) =100 °C-sin | —
(x =0.1m,t) =100 8111(40)

at the other side. There is zero internal heat generation, at t = 0 all temperature is equal to 0°C (sic) and
conductivity, specific heat and density are constant and uniform. The problem asks for the temperature at
location z = 0.08 m at time ¢ = 32 s. The reference result is 7'(0.08 m, 32 s) = 36.60 °C.

PROBLEM thermal DIM 1 # NAFEMS-T3 benchmark: 1d transient heat conduction
READ_MESH slab-0.1m.msh

transient up to 32 seconds
initial condition “all temperature is equal to 0°C”

end_time = 32 #
T O0(x) =0 #
prescribed temperatures as boundary conditions
BC left T7=0

BC right T=100%sin(pi*t/40)

uniform and constant properties

44

0 137 273 ux

(a) Temperature defined at nodes
—
SSSmmee

LV W W W
S =S

A
N\

0544 138 2.23 ux
[I e

(b) Conductivity defined at cells

Figure 2.12: Temperature (main result) and conductivity for the two-squares thermal problem.

45

k = 35.0
cp = 440.5
rho = 7200

+:

conductivity [W/(mK)]
heat capacity [J/(kg K)]
density [kg/m"3]

H

H:

SOLVE_PROBLEM

print detailed evolution into an ASCII file
PRINT FILE nafems-t3.dat %.3f t dt %.2f T(0.05) 7(0.08) 7(0.1)

print the asked result into the standard output
IF done

PRINT “T(0.08m,32s) = " T7(0.08) "°C"

ENDIF

$ gmsh -1 slab-0.1m.geo

[...]

Info : Done meshing 1D (Wall 0.000213023s, CPU 0.000836s)
Info : 61 nodes 62 elements

Info : Writing 'slab-0.1m.msh'...

Info : Done writing 'slab-0.1m.msh'

Info : Stopped on Sun Dec 12 19:41:18 2021 (From start: Wall 0.00293443s, CPU 0.02605s)
$ feenox nafems-t3.fee

T(0.08m,32s) = 36.5996 °C
$ pyxplot nafems-t3.ppl
$

> T(x=0.05m,t) —+ T(x=0.08m,t) —~ T(z=0.10m,t)

100 A
— 15T
g -
&~ I
% L
£ 90 -
g
2, L
% L
= o5 |
O N [N Ao VARV, N 1 RV, | 1 VANV, | i 1 1 1 1 1 1y
0 10 20 30

Time ¢ [seconds]

Figure 2.13: Temperature vs. time at three axial locations for the NAFEMS T3 benchmark
Besides “everything is an expression,” FeenoX follows another cornerstone rule: simple problems ought

to have simple inputs, akin to Unix’ rule of simplicity—that addresses the first half of Alan Kay’s quote
above. This rule is further discussed in sec. 3.1.

46

2.6 Extensibility

It should be possible to add other problem types casted as PDEs (such as the Schroedinger
equation) to the tool using a reasonable amount of time by one or more skilled programmers.
The tool should also allow new models (such as non-linear stress-strain constitutive relation-
ships) to be added as well.

When solving partial differential equations numerically, there are some steps that are independent of the
type of PDE. For example,

1. read the mesh

2. evaluate the coefficients (i.e. material properties)

3. solve the discretized systems of algebraic equations
4. write the results

Even though FeenoX is written in C, it makes extensive use of function pointers to mimic C++’s virtual
methods. This way, depending on the problem type given with the prosLeM keyword, particular PDE-specific
routines are called to

1. initialize and set up solver options (steady-state/transient, linear/non-linear, regular/eigenproblem,
etc.)
2. parse boundary conditions given in the sc keyword
3. build elemental contributions for
a. volumetric stiffness and/or mass matrices
b. natural boundary conditions
4. compute secondary fields (heat fluxes, strains and stresses, etc.) out of the gradients of the primary
fields
5. compute per-problem key performance indicators (min/max temperature, displacement, stress, etc.)
6. write particular post-processing outputs

Indeed, each of the supported problems, namely

e laplace

e thermal

e mechanical

e modal

e neutron diffusion

e neutron_sn

is a separate directory under src/pdes that implements these “virtual” methods (recall that they are function
pointers) that are resolved at runtime when parsing the main input file.

FeenoX was designed with separated common “mathematical” routines from the particular “physical” ones
in such a way that any of these directories can be removed and the code would still compile. The autogen «+
.sh is in charge of

1. parsing the source tree

2. detect which are the available PDEs

3. create appropriate snippets of code so the common mathematical framework can resolve the function
pointers for the entry points

4. build the Makefile.am templates used by the configure script

47

https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/Function_pointer
https://en.wikipedia.org/wiki/C%2B%2B
https://en.wikipedia.org/wiki/Virtual_function
https://en.wikipedia.org/wiki/Virtual_function
https://www.seamplex.com/feenox/doc/feenox-manual.html#problem
https://github.com/seamplex/feenox/tree/main/src/pdes/laplace
https://github.com/seamplex/feenox/tree/main/src/pdes/thermal
https://github.com/seamplex/feenox/tree/main/src/pdes/mechanical
https://github.com/seamplex/feenox/tree/main/src/pdes/modal
https://github.com/seamplex/feenox/tree/main/src/pdes/neutron_difussion
https://github.com/seamplex/feenox/tree/main/src/pdes/neutron_sn
https://github.com/seamplex/feenox/tree/main/src/pdes

For example, if we removed the directory src/pdes/thermal from a temporary clone of the main Git repository
then the whole bootstrapping, configuration and compilation procedure would produce a feenox executable
without the ability to solve thermal problems:
| ~$ cd tmp/

~/tmp$ git clone https://github.com/seamplex/feenox

Cloning into 'feenox'...

remote: Enumerating objects: 6908, done.

remote: Counting objects: 100% (4399/4399), done.

remote: Compressing objects: 100% (3208/3208), done.

remote: Total 6908 (delta 3085), reused 2403 (delta 1126), pack-reused 2509

Receiving objects: 100% (6908/6908), 10.94 MiB | 6.14 MiB/s, done.

Resolving deltas: 100% (4904/4904), done.

~/tmp$ cd feenox

~/tmp/feenox$ rm -rf src/pdes/thermal/

~/tmp/feenox$./autogen.sh

creating Makefile.am... ok

creating src/Makefile.am... ok

calling autoreconf...

configure.ac:18: installing './compile'

configure.ac:15: installing './config.guess'

configure.ac:15: installing './config.sub'

configure.ac:17: installing './install-sh'

configure.ac:17: installing './missing'

parallel-tests: installing './test-driver'

src/Makefile.am: installing './depcomp'

done

~/tmp/feenox$./configure.sh

[

configure: creating ./config.status

config.status: creating Makefile

config.status: creating src/Makefile

config.status: creating doc/Makefile

config.status: executing depfiles commands

~/tmp/feenox$ make

[...1

make[1l]: Leaving directory '/home/gtheler/tmp/feenox'

~/tmp/feenox$

Now if we wanted to run the thermal problem with the two juxtaposed squares from sec. 2.5 above, the
“temporary” FeenoX would complain. But it would still be able solve the NAFEMS LE10 problem problem
right away:
|
~/tmp/feenox$ cd doc/
~/tmp/feenox/doc$../feenox two-squares.fee
error: two-squares.fee: 1: unknown problem type 'thermal’
~/tmp/feenox/doc$ cd ../examples
~/tmp/feenox/examples$../feenox nafems-1el0.fee
sigma y @ D = -5.38367 MPa
~/tmp/feenox/examples$

The list of available PDEs that a certain FeenoX binary has can be found by using the --pdes option. They
are sorted alphabetically, one type per line:

| |
~/tmp/feenox/examples$ feenox --pdes
laplace

48

https://www.seamplex.com/feenox/examples/#nafems-le10-thick-plate-pressure-benchmark

mechanical
modal

neutron diffusion
~/tmp/feenox/examples$

Besides removals, additions—which are also handled by autogen.sh as describe above—are far more interest-
ing to discuss. Additional elliptic problems can be added by using the 1aptlace directory as a template while
using the other directories as examples about how to add further features (e.g. a Robin-type boundary
condition in thermal and a vector-valued unknown in mechanical). More information can be found in the
FeenoX programming & contributing section.

As already discussed in sec. 1, FeenoX is free-as-in-freedom software licensed under the terms of the GNU
General Public License version 3 or, at the user convenience, any later version. In the particular case of
additions to the code base, this fact has two implications.

i. Every person in the world is free to modify FeenoX to suit their needs, including adding a new
problem type either by

a. using one of the existing ones as a template, or
b. creating a new directory from scratch

without asking anybody for any kind of permission. In case this person does not how to program,
he or she has the freedom to hire somebody else to do it. It is this the sense of the word “free” in the
compound phrase “free software:” freedom to do what they think fit (except to make it non-free, see
next bullet).

ii. People adding code own the copyright of the additional code. Yet, if they want to distribute the
modified version they have to do it also under the terms of the GPLv3+ and under a name that does
not induce the users to think the modified version is the original FeenoX distribution.? That is to
say, free software ought to remain free—a.k.a. as copyleft.

Regarding additional material models, the virtual methods that compute the elemental contributions to the
stiffness matrix also use function pointers to different material models (linear isotropic elastic, orthotropic
elastic, etc.) and behaviors (isotropic thermal expansion, orthotropic thermal expansion, etc.) that are
resolved at run time. Following the same principle, new models can be added by adding new routines and
resolving them depending on the user’s input.

2.7 Interoperability

A mean of exchanging data with other computational tools complying to requirements sim-
ilar to the ones outlined in this document. This includes pre and post-processors but also
other computational programs so that coupled calculations can be eventually performed by
efficiently exchanging information between calculation codes.

Sec. 1.2 already introduced the ideas about interoperability behind the Unix philosophy which make up
for most the the FeenoX design basis. Essentially, they sum up to “do only one thing but do it well” Since
FeenoX is filter (or a transfer-function), interoperability is a must. So far, this SDS has already shown
examples of exchanging information with:

« Kate (with syntax highlighting): fig. 1.3

’Even better, these authors should ask to merge their contributions into FeenoX’s main code base.

49

https://www.seamplex.com/feenox/doc/#programming-and-contributing
https://en.wikipedia.org/wiki/Free_as_in_Freedom
https://www.gnu.org/licenses/gpl-3.0
https://www.gnu.org/licenses/gpl-3.0
https://en.wikipedia.org/wiki/Copyleft
https://kate-editor.org/

« Gmsh (both as a mesher and a post-processor): figs. 2.2, 2.3, 2.5, 2.7, 2.11, 2.12
« Paraview: fig. 1.4

« Gnuplot: figs. 1.6, 2.9

« Pyxplot: figs. 2.6, 2.8, 2.13

To illustrate this approach, consider the following input file that solves Laplace’s equation V¢ = 0 on a
square with some space-dependent boundary conditions. Either Gmsh or Paraview can be used to post-
process the results:

o(x,y) =+y for x = —1 (left)
o(z,y) = —y for x = +1 (right)
Vé - it =sin (5-x) fory = —1 (bottom)
Vo =0 for y = +1 (top)

PROBLEM laplace 2d
READ_MESH square-centered.msh # [—1:+1[x[-1:+1]

boundary conditions

BC left phi=+y

BC right phi=-y

BC bottom dphidn=sin(pi/2%*x)
BC top dphidn=0

SOLVE_PROBLEM
same output in .msh and in .vtk formats

WRITE_MESH laplace-square.msh phi VECTOR dphidx dphidy 0
WRITE_MESH laplace-square.vtk phi VECTOR dphidx dphidy 0

Post-processed with GmshPost-processed with Paraview

(a) Post-processed with Gmsh (b) Post-processed with Paraview

Figure 2.14: Laplace’s equation solved with FeenoX

A great deal of FeenoX interoperability capabilities comes from another design decision: output is 100%
controlled by the user (further discussed in sec. 3.2), a.k.a. “no PRINT, no OUTPUT” whose corollary is the
Unix rule of silence (sec. B.11). The following input file computes the natural frequencies of oscillation of a
cantilevered wire both using the Euler-Bernoulli theory and finite elements. It writes a Gihub-formatted
markdown table into the standard output which is then piped to Pandoc and then converted to HTML:

compute the first five natural modes of a cantilever wire

see https://ww.seamplex.com/docs/alambre. pdf (in Spanish)

(note that there is a systematic error of a factor of two in the measured values)

see https://www. seamplex.com/feenox/examples/modal. html#five-natural-modes-of-a-cantilevered-wire
for a slightly more complex example

H I R W I

wire geometry
= 0.5*303e-3
1.948e-3

[m | cantilever length
[m | diameter

a ~ %

material properties for copper

mass = 0.5%8.02e-3 # [kg | total mass (half the measured because of the experimental disposition)
volume = pi*(0.5%d)"2*1
rho = mass/volume # [kg / m'3] density = mass (measured) / volume

50

http://gmsh.info/
https://www.paraview.org/
http://gnuplot.info/
http://www.pyxplot.org.uk/
https://www.seamplex.com/feenox/doc/feenox-manual.html#print
https://github.github.com/gfm/#tables-extension-
https://github.github.com/gfm/#tables-extension-
https://pandoc.org/

s

E = 2%66.2€9 [Pa] Young modulus (twice because the factor-two error)
nu =0 # 'Poissons ratio (does not appear in Euler-Bernoulli)

compute analytical solution

first compute the first five roots ok cosh(kl)=cos(kl)+1
VECTOR Kk1[5]

kl[i] = root(cosh(t)*cos(t)+1, t, 3*i-2,3*i+l)

Ht

then compute the frequencies according to Euler-Bernoulli
note that we need to use SI inside the square root

pi * (d/2)"2

pi/4 * (d/2)"4

H >
I

VECTOR f euler[5]
f euler[i] = 1/(2*pi) * k1(i)"2 * sqrt((E * I)/(rho * A * 174))

now compute the modes numerically with FEM

note that each mode is duplicated as it is degenerated
PROBLEM modal 3D MODES 10

READ_MESH wire-hex.msh

BC fixed fixed

SOLVE_PROBLEM

write a github-formatted markdown table comparing the frequencies

PRINT " \$n\$ | FEM | Euler | Relative difference [%]"

PRINT ":----:4:------ HEHEE H e L Bt

PRINT_VECTOR SEP " | " %g I %.4g f(2*i-1) f euler %.2f 100*(f euler(i)-f(2*i-1))/f euler(i)
PRINT

PRINT ": Comparison of analytical and numerical frequencies, in Hz"

$ gmsh -3 wire-hex.geo

[...]

$ feenox wire.fee | pandoc

<table>

<caption>Comparison of analytical and numerical frequencies, in Hz</caption>
<thead>

<tr class="header">

<th style="text-align: center;">n</th>
<th style="text-align: center;">FEM</th>

<th style="text-align: center;">Euler</th>

<th style="text-align: center;">Relative difference [%]</th>
</tr>

</thead>

<tbody>

<tr class="odd">

<td style="text-align: center;">1</td>

<td style="text-align: center;">45.84</td>

<td style="text-align: center;">45.84</td>

<td style="text-align: center;">0.02</td>

Aded

<tr class="even">

<td style="text-align: center;">2</td>

<td style="text-align: center;">287.1</td>

<td style="text-align: center;">287.3</td>

<td style="text-align: center;">0.06</td>

N Aded

<tr class="odd">

<td style="text-align: center;">3</td>

<td style="text-align: center;">803.4</td>

<td style="text-align: center;">804.5</td>

51

<td

style="text-align:

</tr>

<tr
<td
<td
<td
<td

class="even">

style="text-align:
style="text-align:
style="text-align:
style="text-align:

</tr>

<tr
<td
<td
<td
<td

class="odd">

style="text-align:
style="text-align:
style="text-align:
style="text-align:

</tr>
</tbody>
</table>

$

center;">0.13</td>

center; ">4</td>

center;">1573</td>
center;">1576</td>
center;">0.24</td>

center; ">5</td>

center; ">2596</td>
center;">2606</td>
center;">0.38</td>

Of course these kind of FeenoX-generated tables can be inserted verbatim into Markdown documents (just
like this one) and rendered as tbl. 2.2.

Table 2.2: Comparison of analytical and numerical frequencies, in Hz

n FEM Euler Relative difference [%]
1 45.84 45.84 0.02
2 2871 2873 0.06
3 8034 804.5 0.13
4 1573 1576 0.24
5 2596 2606 0.38

It should be noted that all of the programs and tools mentioned to be interoperable with FeenoX are free
and open source software. This is not a requirement from the SRS, but is indeed a nice-to-have feature.

52

https://en.wikipedia.org/wiki/Free_and_open-source_software
https://en.wikipedia.org/wiki/Free_and_open-source_software

Max.
Applied | Applied M+B Total Metal
Cycles | Cycles | STRESS Stress St Temp. DO
Pair A | Pair B A B (psi) Ke (psi) (psi) N, n, U, (°F) (ppm)
694 447 5 20 | 126542.9 | 2.580 | 144164.4 | 220490.4 140.005 5| 0.0357 566.6 | 0.150
699 447 50 15| 121622.8 | 2.405 | 139047.0 | 198300.6 178.958 15| 0.0838 566.6 | 0.550
699 1021 35 20 | 104691.5 | 1.653 | 126037.5 | 124507.0 582.468 20| 0.0343 600.4 | 0.550
699 899 15 50 | 896954 | 1.000 | 102302.8 | 57864.5 6339.47 15| 0.0024 336.1 | 0.550
695 899 5 35| 84993.9(1.000 | 98798.6| 55882.4 7027.83 5| 0.0007 336.1 | 0.550
185 899 20 30 | 68222.2|1.000 | 76465.1| 43250.2 15549.1 20| 0.0013 336.1 | 0.550
1432 899 20 10 | 66665.7 | 1.000 | 83098.8 | 47002.3 11892.7 10| 0.0008 336.1 | 0.550
1432 1653 10 100 | 49437.0(1.000 | 61950.9| 33687.5 35734.8 10| 0.0003 103.0 | 0.522
1296 1653 20 90 | 32478.6(1.000 | 38719.1| 22025.4 154852 20 | 0.0001 366.2 | 0.522
1136 1653 20 70 | 27045.6| 1.000 | 33751.1| 19388.7 258499 20| 0.0001 417.7 | 0.522
2215 1653 100 50 | 25255.9|1.000 | 25668.1| 15147.6| 1.15E+06 50| 0.0000 547.0 | 0.522
2215 1213 50 20 | 22343.71.000 | 25298.3| 14929.4 1.30E+06 20 | 0.0000 547.0 | 0.050
2215 1562 30 20 | 22047.7|1.000 | 24970.1| 14735.7 | 1.46E+06 20| 0.0000 547.0 | 0.050
2215 1 10 20| 11956.0 1.000 | 12255.6 7232.5 1.00E+11 10 | 0.0000 547.0 | 0.150
1347 1 20 10 3786.5 | 1.000 4173.0 2412.1 1.00E+11 10 | 0.0000 450.0 | 0.150
1347 1595 10 20 3408.0 | 1.000 3430.2 1963.3 1.00E+11 10 | 0.0000 398.7 | 0.050
960 1595 20 10 241.8 | 1.000 2599 146.0 1.00E+11 10 | 0.0000 299.5 | 0.050
960 960 5 5 0.0] 1.000 0.0 0.0] 1.00E+11 10 | 0.0000 299.5 | 0.050
TOTAL CUF = 0.1596

(a) A multi-billion-dollar agency using the Windows philosophy (presumably mouse-based copy and pasted into Word)

i Ay Bj n(A) n(By) MB[ksi] ke; S [ksi] Say; [ksi] N; n; U; Tomax,j [°F]
1 447 694 20 5 125.5 2.580 144.2 220.400 1.40 x 10? 5 3.57 x 1072 566.6
2 447 699 15 50 121.6 2.405 139 198.300 1.79 x 10° 15 8.38 x 1072 566.6
3 699 1020 35 20 104.7 1.653 126.5 124.900 5.77 x 10° 20 3.47 x 1072 5992
4 699 899 15 50 89.7 1.000 102.3 62.640 5.02 x 10° 15 2.99 x 1073 336.1
5 695 899 5 35 84.99 1.000 98.8 59.750 5.77 x 10° 5 8.67x10* 336.1
6 899 1432 30 20 66.67 1.000 83.1 50.360 9.56 x 10° 20 2.09 x 1073 634.2
7 184 899 20 10 68.23 1.000 76.76 46.440 1.24 x 10* 10 8.09 x 10~* 600.0
8 184 1641 10 100 51.22 1.000 55.83 33.630 3.59 x 10* 10 2.78 x 1074 634.2
9 1296 1641 20 90 32.69 1.000 38.94 22.110 1.53 x 10° 20 1.31 x 107* 366.2
10 1134 1641 20 70 27.31 1.000 34,49 19.800 2.34 x 10° 20 8.53 x 1077 419.2
11 1641 2215 50 100 25.47 1.000 25.89 15.270 1.07 x 10° 50 4.66 x 1073 547.0
12 1213 2215 20 50 22.34 1.000 25.3 14.930 1.31 x 10° 20 1.53 % 107° 547.0
13 1630 2215 100 30 24.88 1.000 25.2 14.870 1.35 x 10° 30 2.22x 1077 547.0
14 1347 1630 20 70 16.71 1.000 17.12 9.798 3.72 x 107 20 5.38x 1077 398.7
15 960 1630 20 50 13.54 1.000 13.95 8.405 7.76 x 101° 20 258 x 10710 634.2
16 1595 1630 20 30 13.3 1.000 13.69 7.690 1.00 x 107 20 2.00x 1071 2994
17 1 1630 20 10 12.92 1.000 12.95 7469 1.00 x 10'7 10 1.00 x 1071° 450.0
18 1 1596 10 100 12.92 1.000 12.95 7.469 1.00 x 10'7 10 1.00 x 107° 450.0
19 1562 1596 20 90 2.829 1.000 0.2345 0.132 1.00 x 10" 20 2.00x 1071 2994

CUF total = 0.1615

(b) A small third-world consulting company using the Unix philosophy (FeenoX+AWK+LaTeX)

Figure 2.15: Results of the same fatigue problem solved using two different philosophies.

53

Chapter 3

Interfaces

The tool should be able to allow remote execution without any user intervention after the tool
is launched. To achieve this goal it is required that the problem should be completely defined
in one or more input files and the output should be complete and useful after the tool finishes
its execution, as already required. The tool should be able to report the status of the execution
(i.e. progress, errors, etc.) and to make this information available to the user or process that
launched the execution, possibly from a remote location.

FeenoX is provided as a console-only executable (recall it is a program, not a library) which can be run
remotely through the mechanisms discussed in sec. 2.2 without any requirement such as graphical servers
or special input devices. As already explained, when executed without any arguments, FeenoX writes a
brief message with the version (further discussed in sec. 4.1) and the basic usage on the standard output
and return to the calling shell with a return errorlevel zero:

|

$ feenox
FeenoX v0.3.292-gc932cb5
a cloud-first free no-fee no-X uniX-like finite-element(ish) computational engineering tool

usage: feenox [options] inputfile [replacement arguments] [petsc options]

-h, --help display options and detailed explanations of command-line usage

-v, --version display brief version information and exit

-V, --versions display detailed version information

- -pdes list the types of PROBLEMs that FeenoX can solve, one per line
--elements_info output a document with information about the supported element types
--linear force FeenoX to solve the PDE problem as linear

--non-linear force FeenoX to solve the PDE problem as non-linear

Run with --help for further explanations.
$ echo $7?

The --version option follows the GNU Coding Standards guidelines:

|
$ feenox --version

FeenoX v0.3.292-9gc932cb5

a cloud-first free no-fee no-X uniX-like finite-element(ish) computational engineering tool

54

https://www.gnu.org/prep/standards/standards.html#g_t_002d_002dversion

Copyright © 2009--2024 https://seamplex.com/feenox

GNU General Public License v3+, https://www.gnu.org/licenses/gpl.html.
FeenoX is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.

$

The --versions option shows more information about the FeenoX build and the libraries the binary was
linked against:
|

$ feenox -V

FeenoX v1.0.8-g731ca5d

a cloud-first free no-fee no-X uniX-like finite-element(ish) computational engineering tool

Last commit date : Wed Mar 20 08:11:05 2024 -0300

Build date : Wed Mar 20 16:38:10 2024 -0300

Build architecture : linux-gnu x86 64

Compiler version : gcc (Debian 12.2.0-14) 12.2.0

Compiler expansion : gcc -Wl,-z,relro -I/usr/include/x86 64-linux-gnu/mpich -L/usr/1ib/x86 64-linux-gnu <=
-lmpich

Compiler flags : -03 -flto=auto -no-pie

Builder : gtheler@tom

GSL version 1 2.7.1

SUNDIALS version : N/A

PETSc version : Petsc Development GIT revision: v3.20.5-935-g78ad52f83fb GIT Date: 2024-03-25 <
05:31:58 +0000

PETSc arch : arch-linux-c-debug

PETSc options : --download-eigen --download-hdf5 --download-hypre --download-metis --download-mumps <—

--download-parmetis --download-scalapack --download-slepc --with-64-bit-indices=no --with- <>

debugging=yes --with-precision=double --with-scalar-type=real PETSC ARCH=arch-1linux-c-debug

SLEPc version : SLEPc Development GIT revision: v3.20.1-36-g7a35a7b97 GIT Date: 2023-12-02 <
02:30:03 -0600

The --help option gives a more detailed usage:
|

$ feenox --help
usage: feenox [options] inputfile [replacement arguments] [petsc options]

-h, --help display options and detailed explanations of command-line usage

-v, --version display brief version information and exit

-V, --versions display detailed version information

-c, --check validates if the input file is sane or not

- -pdes list the types of PROBLEMs that FeenoX can solve, one per line
--elements_info output a document with information about the supported element types
--linear force FeenoX to solve the PDE problem as linear

--non-linear force FeenoX to solve the PDE problem as non-linear

--progress print ASCII progress bars when solving PDEs
- -mumps ask PETSc to use the direct linear solver MUMPS

Instructions will be read from standard input if “”- is passed as
inputfile, i.e.

$ echo 'PRINT 2+2' | feenox -
4

The optional [replacement arguments] part of the command line mean that

each argument after the input file that does not start with an hyphen
will be expanded verbatim in the input file in each occurrence of $1,
$2, etc. For example

$ echo 'PRINT $1+$2' | feenox - 3 4
7

PETSc and SLEPc options can be passed in [petsc options] (or [options])
as well, with the difference that two hyphens have to be used instead of
only once. For example, to pass the PETSc option -ksp view the actual
FeenoX invocation should be

$ feenox input.fee --ksp view
For PETSc options that take values, en equal sign has to be used:

$ feenox input.fee --mg levels pc type=sor
See https://www.seamplex.com/feenox/examples for annotated examples.
Report bugs at https://github.com/seamplex/feenox/issues
Ask questions at https://github.com/seamplex/feenox/discussions

Feenox home page: https://www.seamplex.com/feenox/
$

The input file provided as the first argument to the feenox binary contains all the information needed to
solve the problem, so any further human intervention is not needed after execution begins, as requested
by the SRS. If the execution finishes successfully, FeenoX returns a zero errorlevel to the calling shell (and
follows the Unix rule of silence, i.e. no PRINT no output):

|
$ feenox maze.fee

$ echo $?
0
$

If there is problem during execution (including parsing and run-time errors), a line prefixed with error: is
written into the standard error file descriptor and a non-zero errorlevel is returned:

|
$ feenox hello.fee

error: input file needs at least one more argument in commandline
$ echo $?

1

$ feenox hello.fee world

Hello world!
$ echo $7?

This way, the error line can easily be parsed with standard Unix tools like grep and cut or with a proper
regular expression parser. Eventually, any error should be forwarded back to the initiating entity—which
depending on the workflow can be a human or an automation script—in order for her/him/it to fix it.

Following the rule of repair (sec. B.12), ill-defined input files with missing material properties or inconsis-
tent boundary conditions are detected before the actual assembly of the matrix begins:

56

https://www.seamplex.com/feenox/doc/feenox-manual.html#print

$ feenox thermal-1d-dirichlet-no-k.fee
error: undefined thermal conductivity 'k'

$ feenox thermal-1ld-dirichlet-wrong-bc.fee
error: boundary condition 'xxx' does not have a physical group in mesh file 'slab.msh'

$

Error code are designed to be useful and helpful. An attempt to open a file might fail due to a wide variety
of reasons. FeenoX clearly states which one caused the error so it can be remedied:

|
$ cat test.fee

READ_MESH cantilever.msh

$ feenox test.fee

$ chmod -r cantilever.msh

$ feenox test.fee

error: 'Permission denied' when opening file 'cantilever.msh' with mode 'r'

$ rm cantilever.msh

$ feenox test.fee

error: 'No such file or directory' when opening file 'cantilever.msh' with mode 'r'
$

If the command-line option --progress (or the ProGRESS keyword in PRoBLEM) is used, then FeenoX writes into
the standard output three “bars” showing the progress of

1. (.) the build and assembly of the problem matrices (stiffness and mass if applicable)
2. (-) the iterative solution of the problem (either linear or non-linear)
3. (=) the recovery of gradient-based (i.e. strains and stresses) out of the primary solution

$ gmsh -3 nafems-1el0.geo

Info : Running 'gmsh -3 nafems-lel®.geo' [Gmsh 4.9.4-git-10d6al5fd, 1 node, max. 1 thread]
Info : Started on Sat Feb 5 11:26:39 2022

Info : Reading 'nafems-lel@.geo'...

Info : Reading 'nafems-lel0.step'...

Info : - Label 'Shapes/Open CASCADE STEP translator 7.6 1' (3D)
Info : Done reading 'nafems-1lel0.step'

Info : Done reading 'nafems-1lel@.geo’

Info : Meshing 1D...

[...

Info : Done optimizing mesh (0.106654 s)

Info : Done optimizing high-order mesh (0.106654 s)

Info : Done optimizing mesh (Wall 0.114461s, CPU 0.114465s)

Info : 50580 nodes 40278 elements

Info : Writing 'nafems-lel@.msh'...

Info : Done writing 'nafems-1el0@.msh'

Info : Stopped on Sat Feb 5 11:26:40 2022 (From start: Wall 1.08693s, CPU 1.1709s)
$ feenox nafems-1el0.fee --progress

sigma y @ D -5.38228
$

Once again, these ASCII-based progress bars can be parsed by the calling entity and then present it back to
the user. For example, fig. 2.4 shows how the web-based GUI CAEplex shows progress inside an Onshape
tab.

57

https://www.seamplex.com/feenox/doc/feenox-manual.html#problem

Since FeenoX uses PETSc (and SLEPc), command-line options can be passed from FeenoX to PETSc. The
only difference is that since FeenoX follows the POSIX standard regarding options and PETSc does not,
double dashes are required instead of PETSc’ single-dash approach. That is to say, instead of -ksp_monitor
one would have to pass --ksp_monitor (see sec. 3.1.3 for details about the input files):

$ feenox thermal-1d-dirichlet-uniform-k.fee --ksp monitor
0 KSP Residual norm 1.913149816332e+00
KSP Residual norm 2.897817223901e-02
KSP Residual norm 3.059845525572e-03
KSP Residual norm 1.943995979588e-04
KSP Residual norm 7.418444674938e-06
KSP Residual norm 1.233527903582e-07

Any PETSc command-line option takes precedence over the settings in the input file, so the pre-conditioner

can be changed even if explicitly given with the preconbITIONER keyword:

|
$ feenox thermal-1ld-dirichlet-uniform-k.fee --ksp monitor --pc type=ilu

0 KSP Residual norm 2.678619047193e+00
1 KSP Residual norm 7.172418823644e-16
0.5
$

If PETSc is compiled with MUMPS, FeenoX provides a - -mumps option:

|
$ feenox thermal-1d-dirichlet-uniform-k.fee --ksp monitor --mumps

0 KSP Residual norm 1.004987562109e+01
1 KSP Residual norm 4.699798436762e-15
0.5
$

An illustration of the usage of PETSc arguments and the fact that FeenoX automatically detects whether
a problem is linear or not is given below. The case thermal-1d-dirichlet-uniform-k.fee is linear while the
two-squares. fee from section sec. 2.5 is not. Therefore, an SNES monitor should give output for the latter

but not for the former. In effect:

|
$ feenox thermal-1d-dirichlet-uniform-k.fee --snes monitor

0.5
$ feenox two-squares.fee --snes monitor
0 SNES Function norm 9.658033489479e+00
SNES Function norm 1.616559951959e+00
SNES Function norm 1.879821597500e-01
SNES Function norm 2.972104258103e-02
SNES Function norm 2.624028350822e-03
SNES Function norm 1.823396478825e-04
SNES Function norm 2.574514225532e-05
SNES Function norm 2.511975376809e-06
SNES Function norm 4.230090605033e-07
5.154440365087e-08

1
2
3
4
5
6
7
8
9

SNES Function norm

As already explained in sec. 2.2.2, FeenoX supports run-time replacement arguments that get replaced
verbatim in the input file. This feature is handy when the same problem has to be solved over different
meshes, such as when investigating the h-convergence order over Gmsh’s element scale factor -ciscate:

58

https://www.seamplex.com/feenox/doc/feenox-manual.html#problem

PROBLEM thermal 1D

READ_MESH slab-$1.msh

k(x) = 1+4T(x)

BC left T7=0

BC right T=1

SOLVE_PROBLEM

PRINT nodes %+.2e integral((T(x)-(sqrt(1+(3*x))-1))"2,x,0,1)

$ for c in $(feenox steps.fee); do gmsh -v 0 -1 slab.geo -clscale ${c} -o slab-${c}.msh; feenox thermal <>
-1d-dirichlet-temperature-k-parametric.fee ${c}; done | sort -g

11 +6.50e-07

13 +3.15e-07

14 +2.29e-07

15 +1.70e-07

17 +1.00e-07
20 +5.04e-08
24 +2.34e-08
32 +7.19e-09
39 +3.46e-09
49 +1.31e-09
$

Since the main input file is the first argument (not counting POSIX options starting with at least one dash),
FeenoX might be invoked indirectly by adding a shebang line to the input file with the location of the
system-wide executable and setting execution permissions on the input file itself. So if we modify the
above hello.fee example as hello

#!1/usr/local/bin/feenox
PRINT "Hello $1!"

and then we can do

|
$ chmod +x hello

$./hello world
Hello world!

$./hello universe
Hello universe!

$

For example, the following she-banged input file can be used to compute the derivative of a column with
respect to the other as a Unix filter:

#!/usr/local/bin/feenox
FUNCTION f(t) FILE - INTERPOLATION steffen

= vecmin(vec f t)
= vecmax(vec_f t)

o o
I

time step from arguments (or default 10 steps)
DEFAULT_ARGUMENT_VALUE 1 (b-a)/10
h = $1

VAR t'
f'(t) = derivative(f(t'),t',t)

PRINT_FUNCTION f' MIN a+0.5*h MAX b-0.5*h STEP h

59

https://en.wikipedia.org/wiki/Shebang_%28Unix%29
https://seamplex.com/feenox/examples/basic.html#computing-the-derivative-of-a-function-as-a-unix-filter
https://seamplex.com/feenox/examples/basic.html#computing-the-derivative-of-a-function-as-a-unix-filter

feenox f.fee "sin(t)" 1 | ./derivative.fee
.05 .998725
.15 .989041
.25 .968288
.35 .939643
.45 .900427
.55 .852504
.65 .796311
.75 .731216
.85 .66018
.95 .574296

[l ol oo oo Moo oMol

$
0
0
0
0
0
0
0
0
0
0
$

where f.fee is a “command-line function generator”:

end time = $2
PRINT t $1

3.1 Problem input

The problem should be completely defined by one or more input files. These input files might
be

a. particularly formatted files to be read by the tool in an ad-hoc way, and/or

b. source files for interpreted languages which can call the tool through and API or equiv-
alent method, and/or

c. any other method that can fulfill the requirements described so far.

Preferably, these input files should be plain ASCII files in order to allow to manage changes
using distributed version control systems such as Git. If the tool provides an API for an inter-
preted language such as Python, then the Python source used to solve a particular problem
should be Git-friendly. It is recommended not to track revisions of mesh data files but of the
source input files, i.e. to track the mesher’s input and not the mesher’s output. Therefore, it is
recommended not to mix the problem definition with the problem mesh data.

It is not mandatory to include a GUI in the main distribution, but the input/output scheme
should be such that graphical pre and post-processing tools can create the input files and read
the output files so as to allow third parties to develop interfaces. It is recommended to design
the workflow as to make it possible for the interfaces to be accessible from mobile devices and
web browsers.

It is expected that 80% of the problems need 20% of the functionality. It is acceptable if only
basic usage can be achieved through the usage of graphical interfaces to ease basic usage at
first. Complex problems involving non-trivial material properties and boundary conditions
not be treated by a GUI and only available by needing access to the input files.

FeenoX currently works by reading an input file (which in turn can recursively incLupe further input files)
with an ad-hoc format, whose rationale is described in this section. Therefore, it already does satisfy
requirement a. but, eventually, could also satisfy requirement b. by adding a wrapper for high-level lan-
guages such as

« Python

60

https://www.seamplex.com/feenox/doc/feenox-manual.html#include

o Julia
« R

that would either

i. create an input file and run FeenoX in the back, or
ii. successively call the FeenoX functions that define definitions and execute instructions (to be done).

As already explained in sec. 1, the motto is “FeenoX is—in a certain sense—to desktop FEA programs and
libraries what Markdown is to Word and (La)TeX, respectively and deliberately” Hence, the input files act
as the Markdown source: instructions about what to do but not how to do it.

The input files are indeed plain-text ASCII files with English-like keywords that fully define the problem.
The main features of the input format, thoroughly described below, are:

. It is syntactically sugared by using English-like keywords.

. Nouns are definitions and verbs are instructions.

. Simple problems need simple inputs.

. Simple things should be simple, complex things should be possible.

. Whenever a numerical value is needed an expression can be given (i.e. “everything is an expression.”)
. The input file should match as much as possible the paper (or blackboard) formulation of the problem.
. It provides means to compare numerical solutions against analytical ones.

. It should be possible to read run-time arguments from the command line.

. Input files are distributed version control-friendly.

O 00 1 ON U1 v W N =

3.1.1 Syntactic sugar & highlighting

The ultimate goal of FeenoX is to solve mathematical equations that are hard to solve with pencil and paper.
In particular, to integrate differential equations (recall that the first usable computer was named ENIAC,
which stands for Electronic Numerical Integrator and Computer). The input file format was designed as to
how to ask the computer what to compute. The syntax, based on keywords and alphanumerical arguments
was chosen as to sit in the middle of the purely binary numerical system employed by digital computers’
and the purely linguistical nature of human communication. The rationale behind its design is that an
average user can peek a FeenoX input file and tell what it is asking the computer to compute, as already
illustrated for the NAFEMS LE10 problem in fig. 1.3. Even if the input files are created by a computer and
not by a human, the code used to create a human-friendly input file will be human-friendlier than a code
that writes only zeroes and ones as its output (that will become the input of another one following the
Unix rule of composition sec. B.3). As an exercise, compare the input file in fig. 1.3 (or in fig. 3.1) with the
inputs files used by other open source FEA solvers shown in appendix sec. E.

The first argument not starting with a dash to the feenox executable is the path to the main input file. This
main input file can in turn include other FeenoX input files (with the incLupe keyword) and/or read data
from other files (such as meshes with the READ MESH instruction) or other resources (such as data files for
point-wise data interpolation with FuncTION or shared memory objects TBD).

For instance, the test directory includes some spinning-disk cases that compare the analytical solution for
the hoop and radial stresses with the numerical ones obtained with FeenoX. These cases read the radius R
and thickness t from the .geo file used by Gmsh to build the mesh in the first place:

analytical solution
INCLUDE spinning-disk-dimensions.geo

1Analog and quantum computers are out of the scope.

61

https://en.wikipedia.org/wiki/Syntactic_sugar
https://en.wikipedia.org/wiki/Distributed_version_control
https://en.wikipedia.org/wiki/ENIAC
https://www.seamplex.com/feenox/examples/#nafems-le10-thick-plate-pressure-benchmark
https://www.seamplex.com/feenox/doc/feenox-manual.html#include
https://www.seamplex.com/feenox/doc/feenox-manual.html#read_mesh
https://www.seamplex.com/feenox/doc/feenox-manual.html#function
https://github.com/seamplex/feenox/tree/main/tests
https://github.com/seamplex/feenox/blob/main/tests/spinning-disk-parallel-solid-half.fee

S h(r)
S r(r)

((3+nu)*R"2 - (1+3*nu)*r"2)
(3+nu) * (R*2 - r™2)

where spinning-disk-dimensions.geo is

’

R 1
t 003;

0.
0.

The input files are plain text files, either pure ASCII or UTF-8 (more details in sec. 3.1.9). In principle any
extension (even no extension) can be used for the FeenoX input files. Throughout the FeenoX repository
and documentation the extension . fee is used, which has a couple of advantages:

1. The .fee extension is detected by syntax-highlighting extensions for common editors (both graphical
such as Kate and cloud-friendly such as Vim) as illustrated in fig. 3.1.

2. The expression $6 (or ${0}) is expanded to the base name of the input file, i.e. the directory part (if
present) is removed and the . fee extension is removed. Therefore,

’READ_MESH $0.msh

would read a mesh file whose name is the same as the FeenoX input file, without the . fee extension.

3.1.2 Definitions and instructions

The way to tell the computer what problem it has to solve and how to solve it is by using keywords in the
input file. Each non-commented line of the input file should start with either

i. a primary keyword such as PROBLEM or READ_MESH, Or
ii. a variable such as end_time or a vector or matrix with the corresponding index(es) such as v[2] or
Ali][j] followed by the = keyword, or
iii. a function name with its arguments such as f(x,y) followed by the = keyword.

A primary keyword usually is followed by arguments and/or secondary keywords, which in turn can take
arguments as well. For example, in

PROBLEM mechanical DIMENSIONS 3

READ_MESH $0.msh

[...]

print the direct stress y at D (and nothing more)
PRINT "oy @ D = " sigmay(2000,0,300) "MPa"

we have PROBLEM acting as a primary keyword, taking mechanical as its first argument and then pIMENSIONS as a
secondary keyword with 3 being an argument to the secondary keyword. Then READ_MESH is another primary
keyword taking $0.msh (which would be expanded to something like nafems-1e16.msh) as its argument.

A primary keyword can be

1. a definition,
2. an instruction, or

3. both.

Definitions are English nouns and instructions are English verbs. In the example above, PrRoBLEM is a defi-
nition because it tells FeenoX about something it has to do (i.e. that it has to solve a three-dimensional
problem), but does not do anything actually. On the other hand, rReap_MesH is both a definition and an in-
struction: it defines that there exists a mesh named nafems-1e16.msh which might be referenced later (for

62

https://kate-editor.org/
https://www.vim.org/
https://www.seamplex.com/feenox/doc/feenox-manual.html#problem
https://www.seamplex.com/feenox/doc/feenox-manual.html#read_mesh
https://www.seamplex.com/feenox/doc/feenox-manual.html#end_time
https://www.seamplex.com/feenox/doc/feenox-manual.html#problem
https://www.seamplex.com/feenox/doc/feenox-manual.html#problem
https://www.seamplex.com/feenox/doc/feenox-manual.html#read_mesh

nafems-lel0.fee — Kate

Edit Wiew Projects Bookmarks Sessions Tools Settings Help

nafems-le10.fee

e

f NAFEMS Benchmark LE-10: thick plate pressure
PROBLEM mechanical DIMENSIONS 3
READ MESH nafems-lel@.msh # mesh in millimeters

LOADING: uniform normal pressure on the upper surface
BC upper p=1 # 1 Mpa

[Projects [¥ Documents I
[14]

BOUNDARY CONDITIONS:
BC DCD'C' v=0 4
BC ABA'B' u=0
BC BCB'C' u=0 v=0
BC midplane w=0

nodulus in MPa
ratio

SOLVE_PROBLEM # solve
print the direct stress y at D (and nothing more)

PRINT "o y @ D = " sigmay(2000,0,300) "MPa"

= Linel, Column1 INSERT en_Us ~ SoftTabs:2 UTF-8

Q, search and Replace B Current Project

MATERIAL PROPERTIES: isotropic single-material properties
2

FeenoX v

(a) Kate

-+ doc : vim — Konsole

% NAFEMS Benchmark LE-1@: thick plate pressure
PROBELEM mechanical DIMENSIONS 2
READ MESH nafems-lel@.msh # mesh in millimeters

LOADING: uniform normal ssure on the upper surface
BC upper p=1

BOUMDARY CONDITIONS:
BC DCD'C® t
BC ABA'B'

BC BCB'C®

BEC midplane 1

MATERTAL PROPERTIES:
Be3 #

nu
SOLVE FROELEM #

print the direct y at D (and nothing more)
PRINT "o y @ D = " 5j_gm. \ i]

example in an INTEGRATE or WRITE_MESH instructions), but it also asks FeenoX to read the mesh at that point
of the instruction list (more details below). Finally, PRINT is a primary keyword taking different types and
number or arguments. It is an instruction because it does not define anything, it just asks FeenoX to print
the value of the function named sigmay evaluated at 2000, 0, 300. In this case, sigmay is a function which is
implicitly defined when PROBLEM is set to mechanical. If sigmay was referenced before prosLEM, FeenoX would
not find it. And if the problem was of any other type, FeenoX would not find it even when referenced from
the last line of the input file.

The following example further illustrates the differences between definitions and instructions. It compares
the result of (numerically but adaptively) integrating f(z, y, z) = sin(z3 +y?+ 2) over a unit cube against
using a 3D Gauss integration scheme over a fixed set of quadrature points on the same unit cube meshes
with two regular hexahedra in each direction (totaling 8 hexahedra). In one case hex20 are used and in the
other one, hex27. Both cases use 27 quadrature points per element.

these two are instructions to read a two meshes

but they also define two mesh names that can be referred to later
READ_MESH hex20.msh DIM 3

READ_MESH hex27.msh DIM 3

these three lines are definitions, they define three functions

the first two also define four vectors for each function

1. vec_f20_x and vec_f27_x with the x coordinates of the mesh' nodes

2. vec_f20_y and vec_f27_y with the y coordinates of the mesh' nodes

3. vec_f20_z and vec_f27 z with the z coordinates of the mesh' nodes

4. vec_f20 and vec_f27 with the value of the function at the i-th node
these definitions do not evaluate the functions, but they fill vectors 1-3
(we'll fill vectors 4 below)

note that these definitions refer to the meshes defined above in READ MESH
FUNCTION f20(x,y,z) MESH hex20.msh

FUNCTION f27(x,y,z) MESH hex27.msh

f(x,y,z) = sin(x"3 + y"2 + z)

H

TR

$t

H

4t

these two lines are assignment instructions, they “fill” in

the vectors with the value of the functinos f20(x,y,z) and f27(x,y,z)
by evaluating f(x,y,z) at the nodes of the two meshes

(there is a implicit loop for the index i over the size of the vectors)
vec f20[i] = f(vec f20 x[i], vec f20 y[i], vec 20 z[i])

vec f27[1i] = f(vec f27 x[i], vec f27 y[i], vec 27 z[i])

H

this line is an assignment, that first defines a variable If0

and then calls the functional integral three times to perform a

“continuous” (in the sense that it is numeric but adaptive) triple integration
If0 = integral(integral(integral(f(x,y,z), z, 0, 1), y, 0, 1), x, 0, 1)

these two lines are instructions, they integrate functions f20 and f27 over

each of the meshes and then they store the results in the (implicitly defined)
variables If20 and If27

INTEGRATE f20 MESH hex20.msh RESULT If20

INTEGRATE f27 MESH hex27.msh RESULT If27

these lines are instructions, they print stuff to the standard output
nothing is defined

PRINT %.10f If0

PRINT %.10f If20 %+.2e If20-If0

PRINT %.10f If27 S%+.2e If27-If0

$ $ feenox integral over hex.fee
0.7752945175

0.7753714586 +7.69e-05
0.7739155101 -1.38e-03

64

https://www.seamplex.com/feenox/doc/feenox-manual.html#integrate
https://www.seamplex.com/feenox/doc/feenox-manual.html#write_mesh
https://www.seamplex.com/feenox/doc/feenox-manual.html#print
https://www.seamplex.com/feenox/doc/feenox-manual.html#problem
https://www.seamplex.com/feenox/doc/feenox-manual.html#problem

| \

3.1.3 Simple inputs

Consider solving heat conduction on a one-dimensional slab spanning the unitary range = € [0, 1]. The
slab has a uniform unitary conductivity £ = 1 and Dirichlet boundary conditions

T(0) =0
T(1) =1

This simple problem has the following simple input:

PROBLEM thermal 1D # tell FeenoX what we want to solve
READ_MESH slab.msh # read mesh in Gmsh's v4.1 format
k=1 # set uniform conductivity

BC left T7=0 # set fixed temperatures as BCs

BC right T=1
SOLVE_PROBLEM
PRINT T7(0.5)

“left” and “right” are defined in the mesh
tell FeenoX we are ready to solve the problem
ask for the temperature at x=0.5

H H

H

$ feenox thermal-1ld-dirichlet-uniform-k.fee
0.5

$

Now, if instead of having a uniform conductivity the problem had a space-dependent k(z) = 1 + x then
the input would read

PROBLEM thermal 1D

READ_MESH slab.msh

k(x) = 1+x # space-dependent conductivity

BC left T7=0

BC right T=1

SOLVE_PROBLEM

PRINT 7(1/2) log(1+1/2)/log(2) # print numerical and analytical solutions

$ feenox thermal-1ld-dirichlet-space-k.fee
0.584893 0.584963

$

Finally, if the conductivity depended on temperature (rendering the problem non-linear) say like k(z) =
1+ T'(z) then

PROBLEM thermal 1D

READ_MESH slab.msh

k(x) = 14T(x) # temperature—dependent conductivity

BC left T7=0

BC right T=1

SOLVE_PROBLEM

PRINT T(1/2) sqrt(1+(3*0.5))-1 # print numerical and analytical solutions

$ feenox thermal-1ld-dirichlet-space-k.fee
0.581139 0.581139

$

65

https://seamplex.com/feenox/doc/tutorials/320-thermal/#non-linear-state-state-problems

Note that FeenoX could figure out by itself that the two first cases were linear while the last one was not.
This can be verified by passing the extra argument --snes_view. In the first two cases, there will be no extra
output. In the last one, the details of the non-linear solver used by PETSc will be written into the standard
output. The experienced reader should take some time to compare the effort and level of complexity that
other FEA solvers require in order to set up simple problems like these. A discussion of the difference
between linear and non-linear problems can be found in the heat conduction tutorial.

3.1.4 Complex things

Alan Kay’s idea that “simple things should be simple, complex things should be possible” has already
been mentioned in sec. 2.5. The first part of the quote was addressed in the previous section. Of course,
complexity can scale up almost indefinitely so we cannot show an example right here. But the following
repositories contain the scripts and input files (for Gmsh, FeenoX and other common Unix tools such as
Sed and Awk) that solve non-trivial problems using FeenoX as the main tool and employing free and open
source software only, both for the computation and for the creation of figures and result tables.

» Convergence study on stress linearization of an infinite pipe according to ASME: a parametric study
over the number of elements through the thickness of a pipe and the error committed when com-
puting membrane and bending stresses according to ASME VIII Div 2 Sec 5. The study uses the
following element types

unstructured tet4

- unstructured straight tet10
— unstructured curved tet10
— structured straight tet10

— structured curved tet10

— structured hex8

- structured straight hex20
— structured curved hex20

— structured straight hex27
— structured curved hex27

The linearized stresses for different number of elements through the pipe thickness are compared
against the analytical solution. Figures with the meshes employed in each case and with plots of
profiles vs. the radial coordinate and linearized stresses vs. number of elements through the thickness
are created.

« Environmentally-assisted fatigue analysis of dissimilar material interfaces in piping systems of a
nuclear power plant: a case that studies environmentally-assisted fatigue using environment factors
applied to traditional in-air ASME fatigue analysis for operational an incidental transients in nuclear
power plant as propose by EPRI. A fictitious CAD geometry representing a section of a piping system
is studied. Four operational transients are made up with time-dependent data for pressure and water
temperature.

1. A transient heat conduction problem with temperature-dependent material properties (accord-
ing to ASME property tables) are solved over a small region around a material interface between
carbon and stainless steel.

2. Primary stresses according to ASME are computed for each of the operational transients.

3. The results of a modal analysis study are convoluted with a frequency spectrum of a design-
basis earthquake using the SRSS method to obtain an equivalent static volumetric force distri-

66

https://seamplex.com/feenox/doc/tutorials/320-thermal/#non-linear-state-state-problems
https://en.wikipedia.org/wiki/Alan_Kay
https://github.com/seamplex/pipe-linearize
https://github.com/seamplex/piping-asme-fatigue
https://github.com/seamplex/piping-asme-fatigue

bution.

4. The time-dependent temperature distribution for each transient is then used in quasi-static me-
chanical problems to compute secondary stresses according to ASME, including the equivalent
seismic loads at the moment of higher thermal stresses.

5. The history of linearized Tresca stresses are juxtaposed to compute the cumulative usage fac-
tors using the ASME peak-valley method.

6. Environmental data is used to affect each cumulative usage factors with an environment factor
to account for in-water conditions.

These repositories contain a run.sh that, when executed in a properly-set-up GNU/Linux host (either on
premises or in the cloud), will perform a number of steps including

« creation of appropriate meshes

« execution FeenoX

« generation post-processing views, plots or tables with the results
. etc.

Refer to the READMEs in each repository for further details about the mathematical models involved.

3.1.5 Everything is an expression

As explained in the history of FeenoX (sec. C), the first objective of the code was to solve ODEs written in
an ASCII file as human-friendly as possible. So even before any other feature, the first thing the FeenoX
ancestors had was an algebraic parser and evaluator. This was back in 2009, and I performed an online
search before writing the whole thing from scratch. I found a nice post in Slack Overflow? that discussed
some cool ideas and even had some code published under the terms of the Creative Commons license.

Besides ODEs, algebraic expressions are a must if one will be dealing with arbitrary functions in general
and spatial distributions in particular—which is essentially what PDE solvers are for. If a piece of software
wants to allow features ranging from comparing numerical results with analytical expression to converting
material properties from a system of units to another one in a straightforward way for the user (either an
actual human being or a computer creating an input file), it ought to be able to handle algebraic expressions.

Appropriately handling algebraic expressions leads to fulfilling the Unix rule of least surprise (sec. B.10).
If the user needs to define a function f(z) = 1/2 - 22, all she has to do is write

‘f(x) = 1/2 * x"2 ‘

And conversely, if someone reads the line above, she can rest assure that there’s a function called f(x)
that will evaluate to 1/2 - 22 when needed. In effect, anyone can expect the output of this instruction

‘PRINT integral(f(x), x, 0, 1) ‘

to be one third.

Of course, expressions are needed to get 100%-user defined output (further discussed in sec. 3.2), as with
the pRINT instruction above. But once an algebraic parser and evaluator is available, it does not make sense
to keep force the user to write numerical data only. What if a the angular speed is in RPM and the model
needs it in radians per second? Instead of having to write 104.72, FeenoX allows the user to write

w = 1000 * 60*pi/180 ‘

*http://stackoverflow.com/questions/1384811/code-golf-mathematical-expression-evaluator-that-respects-pemdas

67

https://www.seamplex.com/feenox/doc/feenox-manual.html#print
http://stackoverflow.com/questions/1384811/code-golf-mathematical-expression-evaluator-that-respects-pemdas

This way,

1. it is easy to see what the speed in RPM is
2. precision is not lost
3. should the speed change, it is trivial to change the 1eee for anything else.

Whenever an input keyword needs a numerical value, any expression will do:

n=3

VECTOR x SIZE 2+n
x[i] = i"2

PRINT x

$ feenox vector size one plus n.fee
1 4 9 16 25

$

It goes without saying that algebraic expressions are a must when defining transient and/or space-
dependent boundary conditions for PDEs:

PROBLEM thermal 1D
READ_MESH slab.msh

end time = 10
k=1
kappa = 0.1

FUNCTION f(t) DATA {

0 0
1 1
2 1
B 2
4 0
10 0
}

BC left T=f(t)

w = 0.5*%p1
BC right T=1l+sin(w*t)

SOLVE_PROBLEM
PRINT t T7(0) T7(0.5) T(1)

Besides purely algebraic expressions, FeenoX can handle point-wise defined functions which can then be
used in algebraic expressions. A useful example is allowing material properties (e.g. Young modulus) to
depend on temperature. Consider a simple plane-strain square [—1, +1] x [—1, +1] fixed on one side and
with a uniform tension in the opposite one while leaving the other two free. The square’s Young modulus
depends on temperature according to a one-dimensional point-wise defined function Ecapon(77) given by
pairs stated according to one of the many material properties tables from ASME II and interpolated using
Steffen’s method. Although in this example the temperature is given as an algebraic expression of space,
in particular

T(x,y) [°C] = 200+ 350 - y

PROBLEM mechanical plane strain
READ_MESH square-centered.msh # [—1:+1[x[-1:+1]

68

fixed at left, uniform traction in the x direction at right
BC left fixed
BC right tx=50

ASME II Part D pag. 785 Carbon steels with C<=0.30%
FUNCTION E carbon(temp) INTERPOLATION steffen DATA {

-200 216
-125 212
-75 209
25 202
100 198
150 195
200 192
250 189
300 185
350 179
400 171
450 162
500 151
550 137

}

known temperature distribution
(we could have read it from an output of a thermal problem)
T(x,y) := 200 + 350*y

Young modulus is the function above evaluated at the local temperature
E(x,y) := E_carbon(T(x,y))

uniform Poisson's ratio
nu = 0.3

SOLVE_PROBLEM
WRITE_MESH mechanical-square-temperature.vtk E VECTOR u v 0

By replacing T(x,y)= 200 + 350*y with T(x,y)= 260 we can compare the results of the temperature-dependent
case with the uniform-properties case (fig. 3.2):

|
$ feenox mechanical-square-temperature.fee

$ diff mechanical-square-temperature.fee mechanical-square-uniform.fee
29c29
< T(x,y) := 200 + 350*y

> T(x,y) := 200

38c38
< WRITE _MESH mechanical-square-temperature.vtk E VECTOR u v 0

> WRITE_MESH mechanical-square-uniform.vtk E VECTOR u v 0O
$ feenox mechanical-square-uniform.fee

$

In real applications this distribution 7'(x, y) can be read from the output of an actual heat conduction
problem. See sec. 3.2.2 for a revisit of this case, reading the temperature from an unstructured triangular
mesh instead of hard-coding it as an algebraic expression of space.

So remember, in FeenoX everything is an expression—especially temperature, as also shown in the next
section.

69

e ! 1T
L4~ ~
L] ain l‘.’._-
L
T
N T #
S]' —
o< X

Young modulus (GPa)
140. 160. 180. 200.

e

(a) Temperature-dependent £

Young modulus (GPa)
140. 160. 180. 200.

S

3.1.6 Matching formulations

The Lorenz’ dynamical system system and the NAFEMS LE10 benchmark problem, both discussed earlier
in sec. 1.2, illustrate how well the FeenoX input file matches the usual human-readable formulation of
ODE or PDE problems. In effect, fig. 1.3 shows there is a trivial one-to-one correspondence between the
sections of the problem formulated in a sheet of paper and the text file nafems-1e16. fee. The same effect can
be seen in the NAFEMS LE11 problem, which involves a temperature distribution given as an algebraic
expression of I:

Let us consider the NAFEMS LE11 benchmark problem titled “Solid cylinder/taper/sphere-temperature”
stated in fig. 3.3. It consists of an axi-symmetrical geometry subject to thermal loading by a temperature
distribution given by an algebraic expression. The material properties are linear, orthotropic and uniform.
The boundary conditions prescribe symmetries in all directions.

+ Loading
— Linear temperature gradient in the radial an axial direction

1/2
T(a,y,2)) = (a2 +47) " + 2

» Boundary conditions

— Symmetry on z-z plane, i.e. zero y-displacement
Symmetry on y-z plane, i.e. zero z-displacement
— Face on x-y plane zero z-displacement
Face HIH'I' zero z-displacement
» Material properties

— TIsotropic, £ = 210 x 10% MPa, v = 0.3

— Thermal expansion coefficient o = 2.3 x 10~4 oC~!
+ Output

- Direct stress 0, at point A

To solve this problem, we can use the following FeenoX input file that exactly matches the human-readable
formulation:

PROBLEM mechanical
READ_MESH $0.msh

linear temperature gradient in the radial and axial direction
T(x,y,z) = (x*2 + y"2)~(1/2) + z

Boundary conditions

BC xz symmetry
BC yz symmetry
BC xy w=0

BC HIH'I' w=0

material properties (isotropic & uniform so we can use scalar constants)
E = 210e3*1e6 # mesh is in meters, so E=210e3 MPa —-> Pa

nu=0.3 # dimensionless

alpha = 2.3e-4 # in 1/°C as in the problem

SOLVE_PROBLEM
WRITE_RESULTS FORMAT vtk
PRINT "sigma z(A) =" sigmaz(0,1,0)/le6 "MPa (target was -105 MPa)" SEP " "

| |
$ time feenox nafems-lell.fee
sigma z(A) = -105.041 MPa (target was -105 MPa)

71

http://en.wikipedia.org/wiki/Lorenz_system
https://www.nafems.org/publications/resource_center/p18/
https://www.nafems.org/publications/resource_center/p18/

HH‘EmS SOLID CY LINDER/ TAPER/ TES{ No DATE /I1SSUE
SPHERE - TEMPERATURE LE1Y 15-6.- 90/2

ORIGIN NAFEMS report 1582

ANALYSIS TYPE Linear elastic solid
GEOMETRY Units M, KN z
H' —
0.7071 ;o],-__\ 0
Gl
G
f E
F E P
D 1 C
C D
AF
g’ &

LOADING Linear temperature gradient in the radial and axial
direction T°C = (x? + y2) 112 + z

BOUNDARY CONDITIONS Symmetry on x2-plane i.e. 2ero y-displacement
Symmetry on yz-plane i.e. zero x-displacement
Face on xy-plane zero z-displacement
Face HIH'[' zero z-displacement

MATERIAL PROPERTIES
isotropic, B = 210x 10°MPa, v = 0.3
a=23x104/°C

ELEMENT TYPES Solid hexahedra, wedges and tetrahedra
MESHES
Coarse5 x t x 3 Fine10 x2x6
QuUTPUT Direct stresso,, at point A TARGET -105 MPa

(refined axisymmetric)

Figure 3.3: Formulation of the NAFEMS LE11 problem.

72

real Oml.766s
user 0ml.642s
sys 0m0.125s

sigmaz
20e+08 -1.5e+8 -1.0e+8 -5.0e+7 5.6e+06

! ‘

(a) Problem statement (b) Structured hex mesh

Figure 3.4: The NAFEMS LE11 problem results

This feature can be better appreciated by comparing the input files needed to solve these kind of NAFEMS
benchmarks with other finite-element tools. Sec. E gives a glimpse for the NAFEMS LE10 problem, where
the input files are way too cryptic and cumbersome as compared to what FeenoX needs.

3.1.7 Comparison of solutions

One cornerstone design feature is that FeenoX has to provide a way to compare its numerical results with
other already-know solutions—either analytical or numerical—in order to verify their validity. Indeed,
being able to take the difference between the numerical result and an algebraic expression evaluated at
arbitrary locations (usually quadrature points to compute~L,, norms of the error) is a must if code verifi-
cation is required.

Let us consider a one-dimensional slab reactor with uniform macroscopic cross sections

Y, = 0.54628 cm ™
Y, = 0.464338 cm ™!
vy =1.70 - 0.054628 cm ™

such that, if computed with neutron transport theory, is exactly critical with a width of a =
2 - 10.371065 cm. Just to illustrate a simple case, we can solve it using the diffusion approxima-

73

ﬂﬂr[ms SOLID CYLINDER/ TAPER / Test No DATE /1SSUE
SPHERE - TEMPERATURE LE1Y 15-6-90/2
ORIGIN NAFEMS report LSB2 H » ey — A 5%
ANALYSIS TYPE Linear efastic solid GROBLEM mechanical
GEOMETRY Units M, KN z 8] READ_MESH $0.msh
B l.,o_zgzg P # linear temperature g nt in the radial and axial direction
i ~ ApyA
: " , _ . T(x,y,z) = (x*2 + y*2)) + 2z
) 0.4
| i # Boundary conditions
: r”" BC xz symmetry
i o Pusqs BC yz symmetry
' ——] -
| " BC xy w=(
z 07 4 BC HIH'I' w=0
7 et
1 04 L properties (i ropic & uniform so we can u ar constants)
i meters, so 10e3 MP3
LOADING Linear temperature gradient in the radial and axial
direction T°C = (x2 + y2) 12 + 2
BOUNDARY CONDITIONS Symmetry on xz-plane i.e. zero y-displacement
Symmetry on yz-plane i.e. zero x-displacement
Face on xy-plane zero z-displacement SOLVE_PROBLEM
Face HIH'I' zero 2-displacement WRITE_RESULTS FORMAT vtk
MATERIAL PROPERTIES PRINT "sigma_z(A) =" sigmaz(0,1,0)/le6 "MPa (target was -105 MPa)" SEP " "
Isotropi¢, £ = 210x 10° MPa, v = 0.3
a=23x104/°C
"nafems-lell.fee" 20L, 561B 1Ll
ELEMENT TYPES Solid hexahedra, wedges and tetrahedra
MESHES
doc : bash — Konsole
@tom:~/codigos/feenox/doc$ feenox nafems-lell.fee
sigma_z(A) = -105.041 MPa (target was -105 MPa)
@tom:~/codigos/feenox/docs ||
CoarseS x 1x 3 Fine 10 x 2 x 6
QuTPUT Direct stress 0,, al point A TARGET -105 MPa
{refined axisymmetric)

Figure 3.5: The NAFEMS LE11 problem statement and the corresponding FeenoX input

tion with zero flux at both as. This case has an analytical solution for both the effective multiplication
factor

Z/Zf
(8~ %) +D- (%)?

a

keﬂ =

and the flux distribution

o(x) = g - sin <Z-7T>

provided the diffusion coefficient D is defined as

1

D=_—
32

We can solve both the numerical and analytical problems in FeenoX, and more importantly, we can subtract
them at any point of space we want:

PROBLEM neutron_diffusion 1D
READ_MESH slab-UD20-1-0-SL.msh

a =2 * 10.371065 # critical size of the problem UD20-1-0-SL (number 22 report Los Alamos)

Sigma_tl = 0.54628

74

Sigma_sl.1 = 0.464338
nuSigma fl = 1.70*0.054628
D1 = 1/(3*Sigma_t1)

null scalar flux at both ends of the slab
BC left null
BC right null
SOLVE_PROBLEM

analytical effective multiplication factor (diffusion approximation)
keff diff = nuSigma fl/((Sigma t1-Sigma sl.1) + D1*(pi/a)"2)

analytical normalized flux distribution (diffusion approximation)
phi diff(x) = pi/2 * sin(x/a * pi)

PRINT_FUNCTION FORMAT S%+.3f phil phi diff phil(x)-phi diff(x) HEADER

PRINT TEXT "\# keff =" %.8f keff
PRINT TEXT "\# kdiff =" %.8f keff diff
PRINT TEXT "\# rel error = " %+.2e (keff-keff diff)/keff

$ feenox neutron-diffusion-1d-null.fee
X phil phi diff phil(x)-phi diff(x)
+0.000 .000 +0.000 +0.000
+10.371 .574 +1.571 +0.003
+20.742 .000 +0.000 -0.000
+1.474 .348 +0.348 +0.001
+2.829 .654 +0.653 +0.001
+4.074 .911 +0.909 +0.002
+5.217 .118 +1.116 +0.002
+6.268 .280 +1.277 +0.002
+7.233 .399 +1.397 +0.003
+8.120 .483 +1. +0.003
+8.935 .537 +1.534 +0.003
+9.683 .565 +1.562 +0.003
.059 .565 +1.562 +0.003
.807 .537 +1.534 +0.003
.622 .483 +1. +0.003
.509 .399 +1.397 +0.003
.474 .280 +1.277 +0.002
.525 .118 +1.116 +0.002
.668 .911 +0.909 +0.002
+17.913 .654 +0.653 +0.001
+19.268 . +0.348 +0.001
keff 0.96774162
kdiff 0.96797891
rel error -2.45e-04
$

Something similar could have been done for two groups of energy, although the equations get a little bit
more complex so we leave it as an example in the Git repository.

A notable non-trivial thermo-mechanical problem that nevertheless has an analytical solution for the dis-
placement field is the “Parallelepiped whose Young’s modulus is a function of the temperature” (fig. 3.6).
The problem consists of finding the non-dimensional temperature 7" and displacements u, v and w distri-
butions within a solid parallelepiped of length ¢ whose base is a square of i x h. The solid is subject to
heat fluxes and to a traction pressure at the same time. The non-dimensional Young’s modulus E of the

75

https://www.seamplex.com/feenox/examples/#parallelepiped-whose-youngs-modulus-is-a-function-of-the-temperature

material depends on the temperature 7" in a know algebraically way, whilst both the Poisson coefficient v
and the thermal conductivity & are uniform and do not depend on the spatial coordinates:

1000
E(T)= —
(T) 800 — T
v=20.3
k=1
y
|
-4 p
—
B,/ A —
: —
: D —
:) h
‘-’;.O. .. e »
cl.- A X
o
» '
V4
h

1=20. h=10. O=(0. 0. 0) A=(20.0.0) D= (20. 5. 5.)

Figure 3.6: Parallelepiped whose Young’s modulus is a function of the temperature. Original figure from
v7.03.100.pdf

The thermal boundary conditions are

« Temperature at point A at (¢, 0,0) is zero
« Heat flux ¢” through z = ¢ is +2

« Heat flux ¢’ through x = 0 is -2

« Heat flux ¢’ through y = h/2 is +3

« Heat flux ¢ throughy = —h/2is -3

« Heat flux ¢” through 2z = h/2 is +4

« Heat flux ¢’ through z = —h/2is -4

The mechanical boundary conditions are

« Point O at (0,0, 0) is fixed

« Point B at (0, h/2,0) is restricted to move only in the y direction

« Point C at (0,0, /h2) cannot move in the x direction

« Surfaces x = 0 and « = ¢ are subject to an uniform normal traction equal to one

The analytical solution is

76

http://www.code-aster.org/V2/doc/default/fr/man_v/v7/v7.03.100.pdf

T(x,y,z) = —2x — 3y — 4z + 40
A

Ah
u(x,y,z)z;- [:U2+1/-(y2+z2)]+B-a:y+C’-xz+D-x—u-T-(y+z)

B 2
v(r,y,2) = —v- [A-wy+2~ (y2—22+$y>+C-y2+D-y—A-h/4-x—C-h/4-z]

2 h Ah
w(z,y,z) = —v- [Amz—i—B-yz—i—C/Z<22—y2+xy>+D~z+i~y—4-x1

where~A = 0.002, B = 0.003, C' = 0.004 and~D = 0.76. The reference results are the temperature at
points O and D and the displacements at points A and D (tbl. 3.1}.

Table 3.1: Reference results the original benchmark problem

Point Unknown Reference value

@) T +40.0
D T -35.0
A U +15.6
v -0.57
w -0.77
D U +16.3
v -1.785
w -2.0075

First, the thermal problem is solved with FeenoX and the temperature distribution 7'(z, y, z) is written
into a .msh file.

PROBLEM neutron_diffusion 1D
READ_MESH slab-UD20-1-0-SL.msh

a =2 * 10.371065 # critical size of the problem UD20-1-0-SL (number 22 report Los Alamos)
Sigma _sl.1 = 0.464338

nuSigma_fl = 1.70*0.054628
D1 = 1/(3*Sigma_t1)

Sigma_tl = 0.54628

null scalar flux at both ends of the slab
BC left null
BC right null

SOLVE_PROBLEM

analytical effective multiplication factor (diffusion approximation)
keff diff = nuSigma fl/((Sigma_ t1-Sigma sl.1) + D1*(pi/a)"2)

analytical normalized flux distribution (diffusion approximation)
phi diff(x) = pi/2 * sin(x/a * pi)

PRINT_FUNCTION FORMAT %+.3f phil phi diff phil(x)-phi diff(x) HEADER
PRINT TEXT "\# keff " %.8f keff

PRINT TEXT "\# kdiff " %.8f keff diff

PRINT TEXT "\# rel error " %+.2e (keff-keff diff)/keff

77

Then, the mechanical problem reads two meshes: one for solving the actual mechanical problem and
another one for reading 7'(z,y, z) from the previous step. Note that the former contains second-order
hexahedra and the latter first-order tetrahedra. After effectively solving the problem, it writes again tbl. 3.1
in Markdown.

3.1.8 Run-time arguments

The usage of run-time command-line arguments was illustrated in sec. 2.2.2. The idea is that if the expres-
sion $n (or ${n}) is found in the input file, the FeenoX parser expands the expression literally as the n-th
non-optional argument in the command line. The case n = 0 is particular in the sense that, as explained
in sec. 3.1.1, expands to the name of the input file without the leading directory path and the trailing
extension . fee.

The definition DEFAULT ARGUMENT VALUE can be used to give a default value for arguments not provided. oth-
erwise, FeenoX would complain:

$ echo "PRINT \$1" | feenox -
error: input file needs at least one more argument in commandline

$ echo -e "DEFAULT ARGUMENT VALUE 1 hello\nPRINT \$1" | feenox -
hello
$

This feature is extensively used in parametric and optimization runs such as in the verification using the
Method of Manufactured solutions:

MMS data, set T mms(x) and k mms(x) as desired
T mms(x,y) = 1 + sin(2*x)"2 * cos(3*y)"2
k mms(x,y) =1+ x - 0.5%y

READ_MESH square-$2-$3-$4.msh DIMENSIONS 2
PROBLEM thermal

DEFAULT_ARGUMENT_VALUE 1 dirichlet # BCs = dirichlet/neumann

DEFAULT_ARGUMENT_VALUE 2 tri3 # shape = tri3/tri6/quad4/quad8/quad9
DEFAULT_ARGUMENT_VALUE 3 struct # algorithm = struct/frontal/delaunay
DEFAULT_ARGUMENT_VALUE 4 8 # refinement factor = 1/2/3/4...
DEFAULT_ARGUMENT_VALUE 5 0 # write vtk? = 0/1

read the results of the symbolic derivatives
INCLUDE thermal-square-q.fee

set the PDE coefficients and BCs we just read above
k(x,y) = k_mms(x,y)
q(x,y) = q_mms(x,y)

set the BCs (depending on $1)
INCLUDE thermal-square-bc-$1.fee

SOLVE_PROBLEM # this line should be self-explanatory

output
PHYSICAL_GROUP bulk DIM 2
h = sqrt(bulk area/cells)

L-2 error
INTEGRATE (T(x,y)-T _mms(x,y))"2 RESULT e 2
error 2 = sqrt(e 2)

L-inf error

78

https://www.seamplex.com/feenox/doc/feenox-manual.html#default_argument_value
https://github.com/seamplex/feenox/tree/main/tests/mms
https://github.com/seamplex/feenox/tree/main/tests/mms

FIND_EXTREMA abs(T(x,y)-T mms(x,y)) MAX error inf
PRINT %.6f log(h) log(error inf) log(error 2) %g $4 cells nodes %.2f 1024*memory() wall_time()
IF $5

WRITE_MESH thermal-square $1-$2-$3-$4.vtk T g T_mms T(x,y)-T _mms(x,y)
ENDIF

which is called from a Bash loop that looks like

bcs="dirichlet neumann"

elems="tri3 tri6 quad4 quad8 quad9"
algos="struct frontal delaunay"
cs="4 6 8 10 12 16 20 24 30 36 48"

[...]
for bc in ${bcs}; do
for elem in ${elems}; do
for algo in ${algos}; do
[...]
for ¢ in ${cs}; do
name="thermal square ${bc}-${elem}-${algo}-${c}"
prepare mesh
if [! -e square-${elem}-${algo}-${c}.msh]; then
lc=$(echo "PRINT 1/${c}" | feenox -)
gmsh -v 0 -2 square.geo ${elem}.geo ${algo}.geo -clscale ${1lc} -o square-${elem}-${algo}-${c}.msh
fi

run feenox
feenox thermal-square.fee ${bc} ${elem} ${algo} ${c} ${vtk} | tee -a ${dat}.dat

done

done
done
done

The full script can be found in tests/mms/thermal2d/2d/run. sh.

In the input file above, the instruction wrRITE MESH with an explicit file name was given

WRITE_MESH thermal-square $1-$2-$3-$4.vtk T g T_mms T(x,y)-T _mms(x,y)

because non-standard output fields are needed (namely T _mms and T(x,y)-T_mms(x,y)). If the wRITE RESULTS is
used without and explicit FiLe keyword, the output file name is the basename of the input file and the
expansion of all the arguments in the command line, i.e. $6-[$1-[$2...]1].msh.

The study “Comparison of resource consumption for different FEA programs” also performs a parametric
run on the mesh size using similar ideas.

79

https://github.com/seamplex/feenox/blob/main/tests/mms/thermal/2d/run.sh
https://www.seamplex.com/feenox/doc/feenox-manual.html#write_mesh
https://www.seamplex.com/feenox/doc/feenox-manual.html#write_results
https://github.com/seamplex/feenox/tree/main/tests/nafems/le10

3.1.9 Git and macro-friendliness

The FeenoX input files as plain ASCII files by design. This means that they can be tracked with Git or any
other version control system so as to allow reliable traceability of computations. Along with the facts that
FeenoX interacts well with

a. Gmsh, that can either use ASCII input files as well or be used as an API from C, C++, Python and
Julia, and

b. Other scripting languages such as Bash, Python or even AWK, whose input files are ASCII files as
well,

makes it possible to track a whole computation using FeenoX as a Git repository, as already exemplified
in sec. 3.1.4. It is important to note that what files that should be tracked in Git include

. READMEs and documentation in Markdown
. Shell scripts

. Gmsh input files and/or scripts

. FeenoX input files

W N =

Files that should not be tracked include

1. Documentation in HTML or PDF
2. Mesh files
3. VTU/VTK and result files

since in principle they could be generated from the files in the Git repository by executing the scripts,
Gmsh and/or FeenoX.

Even more, in some cases, the FeenoX input files—following the Unix rule of generation sec. B.14-can be
created out of generic macros that create particular cases. For example, say one has a mesh of a fin-based
dissipator where all the surfaces are named surf_1 ¢ for i = 1,...,26. All of them will have a convection
boundary condition while surface number 6 is the one that is attached to the electronic part that has to be
cooled. Instead of having to “manually” giving the list of surfaces that have the convection condition, we
can use M4 to do it for us:

PROBLEM thermal 3d
READ_MESH fins.msh

include(forloop.m4)
BC convection h=10 Tref=-5 forloop(i, 1, 5, “PHYSICAL_GROUP "surf 1 "'i"') forloop(i, 7, 26, <>
"PHYSICAL_GROUP "surf 1 "'i"')

BC surf 1 6 g=1000
k = 237

SOLVE_PROBLEM
WRITE_MESH fins.vtk T

Note that since FeenoX was born in Unix, we can pipe the output of m4 to FeenoX directly by using - as
the input file in the command line:

| |
$ m4 fins.fee.m4 | feenox -
$

| |

Fig. 3.7 confirms that all the faces have the right boundary conditions: face number six got the power BC
and all the rest got the convection BC.

80

— 7.0e+01
— 60
— 50

40

30

20

10

-5.0e+00

s

Figure 3.7: Temperature distribution in a fin dissipator where all the faces have a convection BC except
one that has a fixed heat flux of ¢’ = 1,000W - m~2.

31

Besides being ASCII files, should special characters be needed for any reason within a particular application
of FeenoX, UTF-8 characters can be used natively as illustrated in fig. 3.8.

File Edit WView Projects Selection Go Sessions Tools Settings Help

E O B ~ 1= hello-utfg fee (5 00
E ~ P doc w. doc > [F hello-utf8.fee
= o PRINT "01a Mundo" | 3
(3 PRINT "oviv o1 w”
; PRINT "aJleJL L= s"
'g’ PRINT "{RiFit5R"
o
|
¢
] Q = Line 6, Column 1 INSERT en_uUs Soft Tabs: 2 UTF-8 FeenoX

(a) UTF-8 in Kate

-+ doc : bash

@tom:~/codigos/feenox/docs cat hello-utfd.fee
PRINT "0l& Mundo"
PRINT "o%i1v oiow"
PRINT "adlad bl Lis,a"

PRINT "{REF{H 7 "

@tom:~/codigos/feenox/docs feenox hello-utf8.fee
014 Mundo

071 2L

..:J |—:J L Lo
Rt 7

@tom:~/codigos/feenox/docs |

(b) UTF-8 in Bash (through Konsole)

Figure 3.8: Special characters in Kate and in Bash.

3.2 Results output

The output ought to contain useful results and should not be cluttered up with non-mandatory
information such as ASCII art, notices, explanations or copyright notices. Since the time of
cognizant engineers is far more expensive than CPU time, output should be easily interpreted
by either a human or, even better, by other programs or interfaces—especially those based in
mobile and/or web platforms. Open-source formats and standards should be preferred over pri-
vative and ad-hoc formatting to encourage the possibility of using different workflows and/or

interfaces.

82

The output in FeenoX is 100% user defined, i.e. everything that FeenoX writes comes from one of the
following output instructions:

e PRINT

e PRINTF

e PRINT_FUNCTION
e PRINT_VECTOR

e WRITE_MESH

e WRITE RESULTS
e DUMP

In the absence of any of these instructions, FeenoX will not write anything. Not in the standard output,
not in any other file. Nothing (Unix rule of silence, sec. B.11).

Table 3.2: Relative speed is expressed with reference to IBM 7030. Data for computers expected to appear
after 1965 was estimated.

Computer Monthly Rental Relative Speed First Delivery
CDC 3800 $ 50,000 1 Jan 66
CDC 6600 $ 80,000 6 Sep 64
CDC 6800 $ 85,000 20 Jul 67
GE 635 $ 55,000 1 Nov 64
IBM 360/62 $ 58,000 1 Nov 65
IBM 360/70 $ 80,000 2 Nov 65
IBM 360/92 $ 142,000 20 Nov 66
PHILCO 213 $ 78,000 2 Sep 65
UNIVAC 1108 $ 45,000 2 Aug 65

This is a sound design decision that follows the Unix rules of silence and, more importantly, of economy.
In effect, more than fifty years ago CPU time was far more expensive than engineering time (tbl. 3.2). At
that time, engineering programs had to write everything they computed because it was too expensive to
re-run the calculation in case a single result was missing.

Nowadays the engineering time is far more expensive than CPU time. Therefore, the time needed for the
user to find and process a single result in a soup of megabytes of a cluttered output file far outweighs the
cost of running a computation from scratch with the needed result as the only output. Especially if the
expensive engineers are smart enough to set up the problem using a coarse mesh and run the actual fine
execution only after having checked everything works as expected.

The input file from the tensile-test tutorial illustrates this idea: only 8 lines are needed to define and
solve the problem (including the instructions soLve_proBLEM and coMPUTE_REACTION) and almost twice as much
instructions for getting the required output as needed (mostly PRINTs and one WRITE_RESULTS):

PROBLEM mechanical # self-descriptive
READ_MESH tensile-test.msh # lengths are in mm

material properties, E and nu are "special” variables for the mechanical problem
E =200e3 # [MPa=N/mn'2 |
nu = 0.3

boundary conditions, fixed and Fx are “special” keywords for the mechanical problem

33

https://www.seamplex.com/feenox/doc/feenox-manual.html#print
https://www.seamplex.com/feenox/doc/feenox-manual.html#printf
https://www.seamplex.com/feenox/doc/feenox-manual.html#print_function
https://www.seamplex.com/feenox/doc/feenox-manual.html#print_vector
https://www.seamplex.com/feenox/doc/feenox-manual.html#write_mesh
https://www.seamplex.com/feenox/doc/feenox-manual.html#write_results
https://www.seamplex.com/feenox/doc/feenox-manual.html#dump
https://www.seamplex.com/feenox/doc/tutorials/110-tensile-test/
https://www.seamplex.com/feenox/doc/feenox-manual.html#solve_problem
https://www.seamplex.com/feenox/doc/feenox-manual.html#compute_reaction
https://www.seamplex.com/feenox/doc/feenox-manual.html#print
https://www.seamplex.com/feenox/doc/feenox-manual.html#write_results

the names “left” and “right” should match the physical names in the .geo
BC left fixed
BC right Fx=10e3 # [N |

we can now solve the problem, after this keyword the results will be available for output
SOLVE_PROBLEM

H

essentially we are done by now, we have to write the expected results

+

1. a VIK file to be post-processed in ParaView with
a. the displacements [u,v,w] as a vector
b. the von Mises stress sigma as a scalar
c. the six components of the stress tensor as six scalars
WRITE_MESH tensile-test.vtk VECTOR u v w sigma sigmax sigmay sigmaz tauxy tauyz tauzx
PRINT "1. post-processing view written in tensile-test.vtk"

H

2. the displacement vector at the center of the specimen

PRINT "2. displacement in x at origin: " u(0,0,0) "[mm]"
PRINT " displacement in y at (0,10,0): " v(0,10,0) "[mm 1"
PRINT " displacement in z at (0,0,2.5):" w(0,0,2.5) "[mm]"

3. the principal stresses at the center
PRINT "3. principal stresses at origin: " %.4f sigmal(0,0,0) sigma2(0,0,0) sigma3(0,0,0) "[MPa]"

4. the reaction at the left surface
COMPUTE_REACTION left RESULT R_left
PRINT "4. reaction at left surface: " R left "[N]"

5. stress concentrations at a sharp edge

PRINT "5. stress concentrations at x=55, y=10, z=2.5 mm"

PRINT "von Mises stress:" sigma(55,10,2.5) "[MPa 1"

PRINT "Tresca stress:" sigmal(55,10,2.5)-sigma3(55,10,2.5) "[MPa]"
PRINT "stress tensor:"

PRINT %.1f sigmax(55,10,2.5) tauxy(55,10,2.5) tauzx(55,10,2.5)

PRINT %.1f tauxy(55,10,2.5) sigmay(55,10,2.5) tauyz(55,10,2.5)

PRINT %.1f tauzx(55,10,2.5) tauyz(55,10,2.5) sigmaz(55,10,2.5)

Moreover, when solving PDEs, FeenoX will be also smart enough not to compute quantities which are not
going to be written anywhere. For example, if the input file does not reference the principal stress sigmal
(or wriTE_RESULTS does not ask for it) then FeenoX will not compute it.

3.2.1 Output formats

With the ASCII output to standard output (and other text files) controlled with prinT-like instructions,
YAML or JSON outputs can be easily implemented within the input file itself. For example,

DEFAULT_ARGUMENT_VALUE 1 "hello world"
phi = (l+sqrt(5))/2

PRINTF "a: %.3f" 1/3
PRINT TEXT "phi:" phi SEP " "
PRINT message: ${1} SEP " "

would give

|
$ feenox yaml.fee | tee test.yaml | yq .

{
"a": 0.333,
"phi": 1.61803,

"message": "hello world"

84

https://www.seamplex.com/feenox/doc/feenox-manual.html#write_results

}
$ cat test.yaml
a: 0.333

phi: 1.61803
message: hello world
$

Now, JSON is more picky and care with quoted characters is needed:

1. Curly brackets { and } are used for multi-line input in FeenoX so they have to be quoted as \{ and
\}.

2. Double quotes " are used to delimit keywords with blanks, so they also have to be quoted \" when
appearing verbatim in an output token.

DEFAULT_ARGUMENT_VALUE 1 "hello world"
phi = (1+sqrt(5))/2

PRINTF "\{ \"a\": %.3f," 1/3
PRINT TEXT "\"phi\":" phi ,
PRINT "\"message\": \"${1}\" \}"

$ feenox json.fee | jq .
{

"a": 0.333,

"phi": 1.61803,

"message": "hello world"

In the same sense, in principle any ASCII-based format can be implemented this way. Markdown output,
which can then be converted to other formats as well (such as LaTeX which can then create professionally-
looking tables as in fig. 2.15), has been already covered in sec. 2.7.

Current version can write space and time-dependent distributions into Gmsh’s .msh and VTK’s vtu/.vtk
formats. Both of them are open standard and have open-source readers. Other formats such .med should
be easy to add, but in any case the mesh data converters such as Meshio can be used to convert FeenoX’s
post-processing output to other formats as well.

3.2.2 Data exchange between non-conformal meshes

To illustrate how the output of a FeenoX execution can be read by another FeenoX instance, let us revisit
the plane-strain square from sec. 3.1.5. This time, instead of setting the temperature with an algebraic
expression, we will solve a thermal problem that gives rise to the same temperature distribution but on a
different mesh.

First, we solve a thermal problem on the same square [—1, +1] x [—1, +1] such that the resulting temper-
ature field is 7'(z,y) = 200 + 350 - y:

PROBLEM thermal 2D
READ_MESH square-centered-unstruct.msh # [—1:+1[x[-1:+1]

BC bottom T=-150
BC top T=+550
k=1

85

https://github.com/nschloe/meshio

SOLVE_PROBLEM
WRITE_MESH thermal-square-temperature.msh T

Now, we read the temperature 7'(z, y) from the thermal output mesh file thermal-square-temperature.msh <>
(which is a triangular unstructured grid) into the mechanical input mesh file square-centered.msh (which is
a structured quadrangular grid):

PROBLEM mechanical plane strain
READ_MESH square-centered.msh # [—1:+1[x[-1:+1]

fixed at left, uniform traction in the x direction at right
BC left fixed
BC right tx=50

ASME II Part D pag. 785 Carbon steels with C<=0.30%
FUNCTION E carbon(temp) INTERPOLATION steffen DATA {

-200 216
-125 212
-75 209
25 202
100 198
150 195
200 192
250 189
300 185
350 179
400 171
450 162
500 151
550 137

}

read the temperature from a previous result
READ_MESH thermal-square-temperature.msh DIM 2 READ_FUNCTION T

Young modulus is the function above evaluated at the local temperature
E(x,y) := E_carbon(T(x,y))

uniform Poisson's ratio
nu = 0.3

SOLVE_PROBLEM
WRITE_MESH mechanical-square-temperature-from-msh.vtk E T VECTOR u v 0

Indeed, the terminal mimic shows the difference between the mechanical input from this section and the
one that used an explicit algebraic expression.

|
$ gmsh -2 square-centered-unstruct.geo

[...]

Info : Done meshing 2D (Wall 0.012013s, CPU 0.033112s)
Info : 65 nodes 132 elements

Info : Writing 'square-centered-unstruct.msh'...

Info : Done writing 'square-centered-unstruct.msh'

Info : Stopped on Wed Aug 3 17:47:39 2022 (From start: Wall 0.0208329s, CPU 0.064825s)
$ feenox thermal-square.fee

$ feenox mechanical-square-temperature-from-msh.fee

$ diff mechanical-square-temperature-from-msh.fee mechanical-square-temperature.fee
26,27c26,29

< # read the temperature from a previous result

< READ MESH thermal-square-temperature.msh DIM 2 READ FUNCTION T

86

known temperature distribution

(we could have read it from an output of a thermal problem)

T(x,y) := 200 + 350*y

36¢38

< WRITE MESH mechanical-square-temperature-from-msh.vtk E T VECTOR u v 0

>
>
>
>

> WRITE MESH mechanical-square-temperature.vtk E VECTOR u v 0
$

87

Chapter 4

Quality assurance

Since the results obtained with the tool might be used in verifying existing equipment or
in designing new mechanical parts in sensitive industries, a certain level of software quality
assurance is needed. Not only are best-practices for developing generic software such as

« employment of a version control system,
. automated testing suites,

« user-reported bug tracking support.

- etc.

required, but also since the tool falls in the category of engineering computational software,
verification and validation procedures are also mandatory, as discussed below. Design should
be such that governance of engineering data including problem definition, results and doc-
umentation can be efficiently performed using state-of-the-art methodologies, such as dis-
tributed control version systems

The development of FeenoX is tracked with the distributed version control system Git. The official repos-
itory is hosted on Github at https://github.com/seamplex/feenox/. New non-trivial features are added in
new branches which are then eventually merged into the main branch.

Note that nowadays mentioning that the source code of a piece of software is tracked with Git (why
wouldn’t it?) is like saying a hotel has a private bathroom in each room (why wouldn’t it?). But the
reader ought to keep in mind that there is a non-negligible fraction of production calculation codes (even
nuclear-related) whose source code is not tracked with a DVCS, let alone features and bug fixes follow the
branch-review-merge path.

4.1 Reproducibility and traceability

The full source code and the documentation of the tool ought to be maintained under a control
version system. Whether access to the repository is public or not is up to the vendor, as long
as the copying conditions are compatible with the definitions of both free and open source
software from the FSF and the OSI, respectively as required in sec. 1.

In order to be able to track results obtained with different version of the tools, there should
be a clear release procedure. There should be periodical releases of stable versions that are
required

88

https://github.com/seamplex/feenox/

« not to raise any warnings when compiled using modern versions of common compilers
(e.g. GNU, Clang, Intel, etc.)

+ not to raise any errors when assessed with dynamic memory analysis tools (e.g. Valgrind)
for a wide variety of test cases

« to pass all the automated test suites as specified in sec. 4.2

These stable releases should follow a common versioning scheme, and either the tarballs with
the sources and/or the version control system commits should be digitally signed by a cog-
nizant responsible. Other unstable versions with partial and/or limited features might be re-
leased either in the form of tarballs or made available in a code repository. The requirement
is that unstable tarballs and main (a.k.a. trunk) branches on the repositories have to be com-
pilable. Any feature that does not work as expected or that does not even compile has to be
committed into develop branches before being merge into trunk.

If the tool has an executable binary, it should be able to report which version of the code the
executable corresponds to. If there is a library callable through an API, there should be a call
which returns the version of the code the library corresponds to.

It is recommended not to mix mesh data like nodes and element definition with problem data
like material properties and boundary conditions so as to ease governance and tracking of com-
putational models and the results associated with them. All the information needed to solve
a particular problem (i.e. meshes, boundary conditions, spatially-distributed material proper-
ties, etc.) should be generated from a very simple set of files which ought to be susceptible of
being tracked with current state-of-the-art version control systems. In order to comply with
this suggestion, ASCII formats should be favored when possible.

As stated in the previous section, the official repository is freely available on Github. Aslong as the copying
conditions (GPLv3+) are met, the repository can be freely cloned and/or forked.

Each binary executable feenox has embedded a literal string with the version of the source code used to
build it. When running without arguments, it will print the version (which includes the hash of the last
commit to the repository) and the usage:

|
$ feenox

FeenoX v1.0.7-g9b98430
a cloud-first free no-fee no-X uniX-like finite-element(ish) computational engineering tool

usage: feenox [options] inputfile [replacement arguments] [petsc options]

-h, --help display options and detailed explanations of command-line usage

-v, --version display brief version information and exit

-V, --versions display detailed version information

-c, --check validates if the input file is sane or not

-pdes list the types of PROBLEMs that FeenoX can solve, one per line
-elements_info output a document with information about the supported element types
-linear force FeenoX to solve the PDE problem as linear

-non-linear force FeenoX to solve the PDE problem as non-linear

with --help for further explanations.

As required by the GNU Standards, running with -v or --version will print copyright information as well:

| |
$ feenox -v

89

FeenoX v1.0.7-g9b98430
a cloud-first free no-fee no-X uniX-like finite-element(ish) computational engineering tool

Copyright © 2009--2024 https://seamplex.com/feenox

GNU General Public License v3+, https://www.gnu.org/licenses/gpl.html.
FeenoX is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.

$

And running with -v or --versions will print detailed versioning information about

the date and time of the last commit to the repository

the date and time of compilation

the architecture, compiler type, version and flags used to build the executable
the versions of the external numerical libraries used to link the executable

L

$ feenox --versions
FeenoX v1.0.7-g9b98430
a cloud-first free no-fee no-X uniX-like finite-element(ish) computational engineering tool

Last commit date : Tue Mar 19 16:17:30 2024 -0300

Build date : Wed Mar 20 07:40:34 2024 -0300

Build architecture : linux-gnu x86 64

Compiler version : gcc (Debian 12.2.0-14) 12.2.0

Compiler expansion : gcc -Wl,-z,relro -I/usr/include/x86 64-linux-gnu/mpich -L/usr/1ib/x86 64-linux-gnu <=
-lmpich

Compiler flags : -03 -flto=auto -no-pie

Builder : gtheler@tom

GSL version 8 2alall

SUNDIALS version : N/A

PETSc version : Petsc Development GIT revision: v3.20.5-856-g0d3f65ad054 GIT Date: 2024-03-20 <
02:13:21 +00600

PETSc arch : arch-linux-c-debug

PETSc options : --download-eigen --download-hdf5 --download-hypre --download-metis --download-mumps <—

--download-parmetis --download-scalapack --download-slepc --with-64-bit-indices=no --with- <>

debugging=yes --with-precision=double --with-scalar-type=real PETSC_ARCH=arch-linux-c-debug --force

SLEPc version : SLEPc Development GIT revision: v3.20.1-36-g7a35a7b97 GIT Date: 2023-12-02 <>
02:30:03 -0600

The version is composed of three dot-separated integers:

1. the major version (major changes)
2. the minor version (incompatible input changes)
3. the revision (individual commits from last tag)

The autogen.sh script builds this string at compile time, which is stored in a header and finally embedded
into the executable. The major m and minor n integers are read from the git tag formatted as vm.n +
, which is bumped manually by adding an annotated tag to a particular commit. The revision is computed
automatically with git describe as the number of commits in the main branch from the tag to the last
commit. The hash is also added to avoid ambiguities in case the repository is forked and diverged from
the official one. Periodically, source and binary tarballs are built (using automated scripts in the dist +
subdirectory) and published online.

Given the input-file scheme thoroughfully explained in sec. 3.1—especially the separation of the problem

90

formulation from the mesh data—the input files can be tracked with Git (or any other VCS) as well, therefore
enhancing traceability of results and data governance. Again, this might be obvious in the 2020s. But there
are many FEM solvers which mix the mesh data with the problem definition (e.g. when external loads have
to be given at the nodes instead of using expressions like p=rho*g*z or Fx=1e3).

4.2 Automated testing

A mean to automatically test the code works as expected is mandatory. A set of problems with
known solutions should be solved with the tool after each modification of the code to make
sure these changes still give the right answers for the right questions and no regressions are
introduced. Unit software testing practices like continuous integration and test coverage are
recommended but not mandatory.

The tests contained in the test suite should be

« varied,
. diverse, and
« independent

Due to efficiency issues, there can be different sets of tests (e.g. unit and integration tests,
quick and thorough tests, etc.) Development versions stored in non-main branches can have
temporarily-failing tests, but stable versions have to pass all the test suites.

The make check target will execute a set of Bash scripts which will run hundreds of cases and compare their
solutions to reference values. These references might be

i. analytical solutions,
ii. known reference solutions, or
iii. random reference solutions.

Depending on the type of case being run, some of these tests might work as very simplified verification
cases. But the bulk work as regressions tests so developers adding new features can check they do not
break existing working code.

For example, if by mistake a developer flips a sign of one term when setting convection boundary condi-
tions in the heat-conduction PDE, i.e. from

‘double rhs = h*Tref; ‘

to

‘double rhs = -h*Tref;

then the make check step will detect it. In effect,
|

$ make check

[...1

XFAIL: tests/abort.sh

PASS: tests/algebraic_expr.sh

PASS: tests/annulus-modal.sh
PASS: tests/uo2-pellet.sh
foool

PASS: tests/t21.sh

FAIL: tests/thermal-1d.sh

91

PASS: tests/thermal-2d.sh

FAIL: tests/thermal-3d.sh

XFAIL: tests/thermal-slab-no-k.sh
XFAIL: tests/thermal-slab-wrong-bc.sh
FAIL: tests/thermal-radiation.sh
PASS: tests/transient-mesh.sh

PASS: tests/trig.sh

See ./test-suite.log
Please report to jeremy@seamplex.com

make[3]: *** [Makefile:1723: test-suite.log] Error 1
foool
make: *** [Makefile:1608: check-recursive] Error 1

$

4.3 Bug reporting and tracking

A system to allow developers and users to report bugs and errors and to suggest improvements
should be provided. If applicable, bug reports should be tracked, addressed and documented.
User-provided suggestions might go into the back log or TO-DO list if appropriate.

Here, “bug and errors” mean failure to

« compile on supported architectures,
« run (unexpected run-time errors, segmentation faults, etc.)
« return a correct result

The Github Issues feature at https://github.com/seamplex/feenox/issues is used to report and track bugs
and errors (fig. 4.1).

4.4 Documentation

Documentation should be complete and cover both the user and the developer point of view. It
should include a user manual adequate for both reference and tutorial purposes. Other forms
of simplified documentation such as quick reference cards or video tutorials are not manda-
tory but highly recommended. Since the tool should be extendable (sec. 2.6), there should be a
separate development manual covering the programming design and implementation, explain-
ing how to extend the code and how to add new features. Also, as non-trivial mathematics
which should be verified are expected, a thorough explanation of what equations are taken
into account and how they are solved is required.

92

https://github.com/seamplex/feenox/issues

O O 20pen 6Closed Author~ Label~ Projects~ Milestones~ Assignee~ Sort~

O © Multiple volumes and materials o

#15 by skbizport was closed on May 8, 2023

0 © configure.ac breaks after forking the project Qs
#13 by vitorvas was closed on May 7, 2023

O 1} Fix 'feenox -p' to show pdes line by line. Qs
#12 by vitorvas was closed on Mar 17, 2023

O = Orthotropic thermal expansion
#9 by gtheler was merged on Jan 18, 2022

O © Trouble With Orthotropic Branch Q7
#8 by jamonroe848 was closed on Apr 27, 2023

0 @ Ppetsc error Qz
#7 by cprakashjo1 was closed on Sep7, 2021

O © The BLAS library used by PETSc is not found by GSL in Fedora =k}

#6 opened on Sep 2, 2021 by gtheler

O O configure does not find PETSc from Fedora's repositories =k}
#5 opened on Sep 2, 2021 by gtheler

Figure 4.1: Github Issues for FeenoX

It should be possible to make the full documentation available online in a way that it can be
both printed in hard copy and accessed easily from a mobile device. Users modifying the tool to
suit their own needs should be able to modify the associated documentation as well, so a clear
notice about the licensing terms of the documentation itself (which might be different from the
licensing terms of the source code itself) is mandatory. Tracking changes in the documentation
should be similar to tracking changes in the code base. Each individual document ought to
explicitly state to which version of the tool applies. Plain ASCII formats should be preferred.
It is forbidden to submit documentation in a non-free format.

The documentation shall also include procedures for

« reporting errors and bugs
« releasing stable versions
« performing verification and validation studies
« contributing to the code base, including
- code of conduct
— coding styles
— variable and function naming conventions

According to Eric Raymond’s book “The Art of Unix Programming”:

Compactness is the property that a design can fit inside a human being’s head. A good practical
test for compactness is this: Does an experienced user normally need a manual? If not, then
the design (or at least the subset of it that covers normal use) is compact.

Following to 20-80 rule, we could say that FeenoX is compact for 80% of its usage. But the most complex
20% of the cases might need users (even the author) to look up the syntax of the definition and instructions
in the manual page (illustrated in fig. 4.2), which is accessible with man feenox after installing with make <+
install:

|

$ man -k feenox
feenox (1) - a cloud-first free no-X uniX-like finite-element(ish) computational engineering <

tool
$ man feenox

$

This man page is compiled into troff from a markdown source, which in turn has some sections involving
the syntax and reference of the

93

> e

FEENOX(1) FeenoX User Manual FEENOX(1)

INAME
FeenoX - a cloud-first free no-X unix-like finite-element(ish) computational engineering
tool

[SYNOPSIS
The basic usage is to execute the feenox binary passing a path to an input file that de
fines the problem, along with other options and command-line replacement arguments which
are explained below:
feenox [options . input-file [optional commandline_replacement_arguments
For large problems that do not fit in a single computer, a parallel run using mpirun(1)
will be needed:
mpirun -n number_of_threads feenox [options . input-file [optional commandline_re
lacement_arguments

IDESCRIPTION

FeenoX is a computational tool that can solve engineering problems which are usually cast-
ed as differential-algebraic equations (DAEs) or partial differential equations (PDES).
It is to finite elements programs and libraries what Markdown is to Word and TeX, respec
tively. In particular, it can solve

« dynanical systems defined by a set of user-provided DAEs (such as plant control dynamics
for example)

« mechanical elasticity

(a) Gnome Terminal

doc: man — Konsole voA X

INTEGRATE

¢ integrate a fu ion or expression over a mesh (or a subset of it).

INTEGRATE { =< ression> | <function> } [OVER <physic group>] [MESH <mesh_identifier>] [GAUSS | CELLS
RESULT <variable

Either an expression or a function of space x, y and/or z should be given. If the integrand is a function, do not include
the arguments, i.e. instead of ¥(x,y,z) just write f. The results should be the same but efficiency will be different
aster for pure functions). By default the integration is performed over the highest-dimensional elements of the mesh,
over the whole volume, area or length for three, two and one-dimensional meshes, respectively If the integration is
arried out over just a physical group, it has teo be given in OVER. If there are more than one mesh defined, an ex-
one has to be given with MESH. Either GAUSS or CELLS define how the integration is to be performed. With GAUSS
the integration is performed using the Gauss points and weights associated to each element type. With CELLS the integral
is computed as the sum of the product of the integrand at the center of each cell (element) and the cell’s volume. Do ex-
pect differences in the results and efficiency between these two approaches depending on the nature of the integrand. The
result of the integration is stored in the variable given by the mandatory keyword RESULT. If the variable does

it is created.

LINEARIZE_STRESS

Compute linearized membrane and/or bending stresses ording to ASME VIII Div 2 Sec

LINEARIZE STRESS

MATERIAL

Define a i its and properties to be used in mes .

MATERIAL [MESH <name

> 1 [PHYSICAL_GROUP <name_1> [PHYSICAL_GROUP <name_2 ... 111 1[<property_name_1
[<property name pr 2= [... 111

If the name of the material matches a physical group in the mesh, it is automatically linked te that physical group. If
there are many meshes, the mesh this keyword refers to has to be given with MESH. If the material applies to more than

roup in the mesh, they i as many PHYSICAL_GROUP keywords as needed. The names of the prop-
anual page feenox.l line 545 (press h for help or g to quit)

(b) Konsole

Figure 4.2: The FeenoX Unix manpage in section 1 when running man feenox

94

>=<e

« definitions and instructions
« special variables
« internal built-in functions and functionals

generated by a script that parses the actual source code. For instance, the code that parses the INTEGRATE
function has three-forward-slash comments that tell this script that it has to prepare documentation:

int feenox parse integrate(void) {

mesh _integrate t *mesh integrate = NULL;
feenox_check alloc(mesh_integrate = calloc(1l, sizeof(mesh integrate t)));

// /kw_pde+INTEGRATE+usage { <expression> | <function> }
// /kw_pde+INTEGRATE+detail Either an expression or a function of space x, y and/or z should be <
given.
///kw_pde+INIEGRATE+detail If the integrand is a function, do not include the arguments, i.e. instead <
of f(x,y,z)" just write 'f .
// /kw_pde+INIEGRATE+detail The results should be the same but efficiency will be different (faster for <
pure functions).
char *token = feenox_get next_token(NULL);
if ((mesh_integrate->function = feenox get function ptr(token)) == NULL) {
feenox call(feenox expression parse(&mesh integrate->expr, token));

}

char *name mesh = NULL;
char *name physical group = NULL;
char *name result = NULL;

while ((token = feenox get next token(NULL)) != NULL) {

// /kw_pde+INTEGRATE+usage [OVER <physical_group>]

// /kw_pde+INTEGRATE+detail By default the integration is performed over the highest-dimensional <—
elements of the mesh,

// /kw_pde+INTEGRATE+detail i.e. over the whole volume, area or length for three, two and <
one-dimensional meshes, respectively.

///kw_pde+INIEGRATE+detail If the integration is to be carried out over just a physical group, it has <
to be given in 'OVER'.

if (strcasecmp(token, "OVER") == 0) {
feenox_call(feenox_parser_string(&name_physical group));

The script doc/reference.sh would create the markdown snippet shown in fig. 4.3a, which then can be con-
verted to other output formats (figs. 4.3b, 4.3c, 4.3d) for the final user (and author) to look up the syntax of
the input keywords.

Other pieces of documentation in markdown which then are converted to HTML & PDF (with Pandoc and
XeLaTeX) include:

+ The FeenoX manual

« The FeenoX description (converted to Texinfo as well)
« Software Requirements Specification

« Software Design Specification

 Frequently Asked Questions

» FeenoX Unix man page

« History

« Compilation guide

« Programming guide

95

https://github.com/seamplex/feenox/blob/main/doc/feenox-desc.md
https://github.com/seamplex/feenox/blob/main/doc/feenox-desc.md
https://github.com/seamplex/feenox/blob/main/doc/srs.md
https://github.com/seamplex/feenox/blob/main/doc/sds.md
https://github.com/seamplex/feenox/blob/main/doc/FAQ.md
https://github.com/seamplex/feenox/blob/main/doc/feenox.1.md
https://github.com/seamplex/feenox/blob/main/doc/history.md
https://github.com/seamplex/feenox/blob/main/doc/compilation.md
https://github.com/seamplex/feenox/blob/main/doc/programming.md

Markdown
(a) Mark-
down

Manpage
(b) Man-
page

HTML

(©)
HTML

PDF

()
PDF

Figure 4.3: Reference for the keyword INTEGRATE in Markdown created out of special comments in the C
source converted to different output formats.

96

Appendix A

Appendix: Downloading and compiling
FeenoX

A.1 Binary executables

Browse to https://www.seamplex.com/feenox/dist/ and check what the latest version for your architecture
is. Then do

feenox version=1.1

wget -c https://www.seamplex.com/feenox/dist/linux/feenox-v${feenox version}-linux-amd64.tar.gz

tar xzf feenox-v${feenox version}-linux-amd64.tar.gz
sudo cp feenox-v${feenox version}-linux-amd64/bin/feenox /usr/local/bin

You’ll have the binary under bin and examples, documentation, manpage, etc under share. Copy bin/ +
feenox into somewhere in the PaTH and that will be it. If you are root, do

sudo cp feenox-v${feenox version}-linux-amd64/bin/feenox /usr/local/bin

If you are not root, the usual way is to create a directory $HoME/bin and add it to your local path. If you have
not done it already, do

mkdir -p $HOME/bin
echo 'expot PATH=$PATH:$HOME/bin' >> .bashrc

Then finally copy bin/feenox to $HOME/bin

cp feenox-v${feenox version}-linux-amd64/bin/feenox $HOME/bin

Check if it works by calling feenox from any directory (you might need to open a new terminal so .bashrc
is re-read):
|
$ feenox
FeenoX v1.1-994ddf72
a cloud-first free no-fee no-X uniX-like finite-element(ish) computational engineering tool

usage: feenox [options] inputfile [replacement arguments] [petsc options]

97

https://www.seamplex.com/feenox/dist/

-h, --help display options and detailed explanations of command-line usage

-v, --version display brief version information and exit

-V, --versions display detailed version information

-c, --check validates if the input file is sane or not

- -pdes list the types of PROBLEMs that FeenoX can solve, one per line
--elements info output a document with information about the supported element types

--ast dump an abstract syntax tree of the input
--linear force FeenoX to solve the PDE problem as linear
--non-linear force FeenoX to solve the PDE problem as non-linear

Run with --help for further explanations.
$

A.2 Source tarballs

To compile the source tarball, proceed as follows. This procedure does not need git nor autoconf but a new
tarball has to be downloaded each time there is a new FeenoX version.

1. Install mandatory dependencies

|
sudo apt-get update

sudo apt-get install gcc make libgsl-dev

If you cannot install libgst-dev, you can have the configure script to download and compile it for you.
See point 4 below.

2. Install optional dependencies (of course these are optional but recommended)
|

sudo apt-get install libsundials-dev petsc-dev slepc-dev

3. Download and un-compress FeenoX source tarball. Browse to https://www.seamplex.com/feenox/
dist/src/ and pick the latest version:

|
wget https://www.seamplex.com/feenox/dist/src/feenox-vl.1l.tar.gz

tar xvzf feenox-vl.l.tar.gz

4. Configure, compile & make

|
cd feenox-vl.1

./configure
make -j4

If you cannot (or do not want) to use libgsl-dev from a package repository, call configure with -- +
enable-download-gsl:

|
./configure --enable-download-gsl

If you do not have Internet access, get the tarball manually, copy it to the same directory as
configure and run again.

5. Run test suite (optional)

98

https://www.seamplex.com/feenox/dist/src/
https://www.seamplex.com/feenox/dist/src/

make check

6. Install the binary system wide (optional)

sudo make install

A.3 Git repository

The Git repository has the latest sources repository. To compile, proceed as follows. If something goes
wrong and you get an error, do not hesitate to ask in FeenoX’s discussion page.

If you do not have Git or Autotools, download a source tarball and proceed with the usual
configure & make procedure. See these instructions.

1. Install mandatory dependencies

|
sudo apt-get update

sudo apt-get install git build-essential make automake autoconf libgsl-dev

If you cannot install 1ibgsi-dev but still have git and the build toolchain, you can have the configure
script to download and compile it for you. See point 4 below.

2. Install optional dependencies (of course these are optional but recommended)

sudo apt-get install libsundials-dev petsc-dev slepc-dev

3. Clone Github repository

git clone https://github.com/seamplex/feenox

4. Bootstrap, configure, compile & make

|
cd feenox

./autogen.sh

./configure
make -j4

If you cannot (or do not want to) use libgsl-dev from a package repository, call configure with -- «+

enable-download-gsl:

./configure --enable-download-gsl
|

If you do not have Internet access, get the tarball manually, copy it to the same directory as
configure and run again. See the detailed compilation instructions for an explanation.

5. Run test suite (optional)

make check

6. Install the binary system wide (optional)

https://github.com/seamplex/feenox/discussions
https://seamplex.com/feenox/dist/src/
doc/source.md
compilation.md

| |
sudo make install

If you do not have root permissions, configure with your home directory as prefix and
then make install as a regular user:

|
./configure --prefix=$HOME

make
make install

To stay up to date, pull and then autogen, configure and make (and optionally install):

|
git pull

./autogen.sh

./configure
make -j4
sudo make install

100

Appendix B

Appendix: Rules of Unix philosophy

In 1978, Doug Mcllroy—the inventor of Unix pipes and one of the founders of the Unix tradition—stated:

i. Make each program do one thing well. To do a new job, build afresh rather than complicate old
programs by adding new features.

ii. Expectthe output of every program to become the input to another, as yet unknown, program. Don’t
clutter output with extraneous information. Avoid stringently columnar or binary input formats.
Don’t insist on interactive input.

iii. Design and build software, even operating systems, to be tried early, ideally within weeks. Don’t
hesitate to throw away the clumsy parts and rebuild them.

iv. Use tools in preference to unskilled help to lighten a programming task, even if you have to detour
to build the tools and expect to throw some of them out after you’ve finished using them.

He later summarized it this way:

This is the Unix philosophy: Write programs that do one thing and do it well. Write programs
to work together. Write programs to handle text streams, because that is a universal interface.

FeenoX explicitly followed the above ideas from scratch, especially the for sentences in bullet ii. It is
even, like Unix itself, a third-system effect where clumsy parts of previous attempts were thrown away
and rebuilt from scratch. The following sections explain how each of the seventeen rules was taken into
account when designing and implementing FeenoX.

B.1 Rule of Modularity

Developers should build a program out of simple parts connected by well defined interfaces, so
problems are local, and parts of the program can be replaced in future versions to support new
features. This rule aims to save time on debugging code that is complex, long, and unreadable.

FeenoX is designed to be as lightweight as possible. On the one hand, it relies on third-party high-quality
libraries to do the heavy mathematical weightlifting such as

« GNU Scientific Library for general mathematics,
« SUNDIALS IDA for ODEs and DAEs,
« PETSc for linear, non-linear and transient PDEs, and

101

https://www.gnu.org/software/gsl/
https://computing.llnl.gov/projects/sundials/ida
https://petsc.org/

« SLEPc for PDEs involving eigen problems

because these libraries were written by professional programmers using algorithms designed by profes-
sional mathematicians. Yet-to-be-discovered improved mathematical schemes and/or coding algorithms
can be eventually used by FeenoX by just updating those dependencies, which for sure will keep their
well-defined interfaces (because they are programmed by professional programmers).

Moreover, the extensibility feature (sec. B.17) of having each PDE in separate directories which can be
added or removed at compile time without changing any line of the source code goes into this direction
as well. Relying of C function pointers allows (in principle) to replace these “virtual” methods with other
ones using the same interface.

Note that our (human) languages in general and words in particular shape and limit the way
we think. Fortran’s concept of “modules” is not the same as Unix’s concept of “modularity.” I
wish two different words had been used.

B.2 Rule of Clarity

Developers should write programs as if the most important communication is to the developer
who will read and maintain the program, rather than the computer. This rule aims to make
code as readable and comprehensible as possible for whoever works on the code in the future.

Of course there might be a confirmation bias in this section because every programmer thinks their code
is clear (and everybody else’s is not). But the first design decision to fulfill this rule is the programming
language: there is little change to fulfill it with Fortran. One might argue that C++ can be clearer than C
in some points, but for the vast majority of the source code they are equally clear. Besides, C is far simpler
than C++ (see rule of simplicity).

The second decision is not about the FeenoX source code but about FeenoX inputs: clear human-readable
input files without any extra unneeded computer-level nonsense. The two illustrative cases are the
NAFEMS LE10 & LE11 benchmarks, where there is a clear one-to-one correspondence between the
“engineering” formulation and the input file FeenoX understands.

B.3 Rule of Composition

Developers should write programs that can communicate easily with other programs. This
rule aims to allow developers to break down projects into small, simple programs rather than
overly complex monolithic programs.

Previous designs of FeenoX’ predecessors used to include instructions to perform parametric sweeps(and
even optimization loops), non-trivial macro expansions using M4 and even execution of arbitrary shell
commands. These non-trivial operations were removed from FeenoX to focus on the rule of composition,
paying especially attention to easing the inclusion of calling the feenox binary from shell scripts, enforc-
ing the composition with other Unix-like tools. Emphasis has been put on adding flexibility to program-
matic generation of input files (see also rule of generation in sec. B.14) and the handling and expansion of
command-line arguments to increase the composition with other programs.

Moreover, the output is 100% controlled by the user at run-time so it can be tailored to suit any other
programs’ input needs as well. An illustrative example is creating professional-looking tables with results
using AWK & LaTeX.

102

http://slepc.upv.es/
https://www.seamplex.com/feenox/examples/mechanical.html#nafems-le10-thick-plate-pressure-benchmark
https://www.seamplex.com/feenox/examples/mechanical.html#nafems-le11-solid-cylindertapersphere-temperature-benchmark
https://www.seamplex.com/feenox/doc/sds.html#sec:interoperability
https://www.seamplex.com/feenox/doc/sds.html#sec:interoperability

B.4 Rule of Separation

Developers should separate the mechanisms of the programs from the policies of the programs;
one method is to divide a program into a front-end interface and a back-end engine with which
that interface communicates. This rule aims to prevent bug introduction by allowing policies
to be changed with minimum likelihood of destabilizing operational mechanisms.

FeenoX relies of the rule of separation (which also links to the next two rules of simplicity and parsimony)
from the very beginning of'its design phase. It was explicitly designed as a glue layer between a mesher like
Gmsh and a post-processor like Gnuplot, Gmsh or Paraview. This way, not only flexibility and diversity (see
#sec:unix-diversity) can be boosted, but also technological changes can be embraced with little or no effort.
For example, CAEplex provides a web-based platform for performing thermo-mechanical analysis on the
cloud running from the browser. Had FeenoX been designed as a traditional desktop-GUI program, this
would have been impossible. If in the future CAD/CAE interfaces migrate into virtual and/or augmented
reality with interactive 3D holographic input/output devices, the development effort needed to use FeenoX

as the back end is negligible.

B.5 Rule of Simplicity

Developers should design for simplicity by looking for ways to break up program systems into
small, straightforward cooperating pieces. This rule aims to discourage developers’ affection
for writing “intricate and beautiful complexities” that are in reality bug prone programs.

The main source of simplicity comes from the design of the syntax of the input files, discussed in detail in
the SDS:

« English-like self-evident input files matching as close as possible the problem text.
« Simple problems need simple input.

« Similar problems need similar inputs.

« If there is a single material there is no need to link volumes to properties.

B.6 Rule of Parsimony

Developers should avoid writing big programs. This rule aims to prevent overinvestment of
development time in failed or suboptimal approaches caused by the owners of the program’s
reluctance to throw away visibly large pieces of work. Smaller programs are not only easier
to write, optimize, and maintain; they are easier to delete when deprecated.

We already said that FeenoX is a glue layer between a mesher and a post-processing tool. Even more, at
another level, it acts as two glue layers between the mesher and PETSc, and PETSc and the post-processor.

On the other hand, we also already stated that FeenoX was written from scratch after throwing away
clumsy code from two previous attempts. For instance, these previous versions used to implement para-
metric and optimization schemes. Instead, in FeenoX, these type of runs have to be driven from an outer
script (Bash, Python, etc.)

103

https://www.caeplex.com
https://www.seamplex.com/feenox/doc/sds.html#sec:input

B.7 Rule of Transparency

Developers should design for visibility and discoverability by writing in a way that their
thought process can lucidly be seen by future developers working on the project and using
input and output formats that make it easy to identify valid input and correct output. This
rule aims to reduce debugging time and extend the lifespan of programs.

As with the rule of clarity (sec. B.2), there is a risk of falling into the confirmation bias because every
programmer thinks its code is transparent. Anyway, FeenoX is written in C99 which is way easier to
debug than both Fortran and C++. Yet, very much like PETSc, FeenoX makes use of structures and func-
tion pointers to give the same functionality as C++’s virtual methods without needing to introduce other
complexities that make the code base harder to maintain and to debug.

Regarding identification of valid inputs and correct outputs,

1. The build system includes a make check target that runs hundreds of regressions tests.
2. The code supports verification using the Method of Manufactured Solutions

B.8 Rule of Robustness

Developers should design robust programs by designing for transparency and discoverability,
because code that is easy to understand is easier to stress test for unexpected conditions that
may not be foreseeable in complex programs. This rule aims to help developers build robust,
reliable products.

Robustness is the child of transparency and simplicity.

B.9 Rule of Representation

Developers should choose to make data more complicated rather than the procedural logic
of the program when faced with the choice, because it is easier for humans to understand
complex data compared with complex logic. This rule aims to make programs more readable
for any developer working on the project, which allows the program to be maintained.

There is a trade off between clarity and efficiency. However, avoiding Fortran should already fulfill this
rule. FeenoX uses C structures with function pointers, which make it far simple to understand than similar
Fortran-based FEM tools. Just compare the source directories of FeenoX and CalculiX. Take for instance
the file stress.c from src/pdes/mechanical (which if deleted, will remove support for mechanical problems but
it will not prevent the compilation of feenox) from the former and calcstress.f (buried inside 2,400 files
in src) from the latter. There might be more illustrative examples showing how FeenoX’ design is more
representative than of CalculiX, but it is way too hard to understand the source code of the latter (even
though the license is supposed to be GPL).

B.10 Rule of Least Surprise

Developers should design programs that build on top of the potential users’ expected knowl-
edge; for example, ‘+’ in a calculator program should always mean ‘addition’. This rule aims
to encourage developers to build intuitive products that are easy to use.

The rules of input syntax have been designed with this rule in mind. Just note a couple of them:

104

https://github.com/seamplex/feenox/tree/main/tests
https://github.com/seamplex/feenox/tree/main/tests/mms
https://github.com/seamplex/feenox/blob/main/src/pdes/mechanical/stress.c
https://github.com/seamplex/feenox/blob/main/src/pdes/mechanical/stress.c
https://github.com/calculix/ccx_prool/blob/master/CalculiX/ccx_2.21/src/calcstress.f
https://github.com/calculix/ccx_prool/tree/master/CalculiX/ccx_2.21/src

+ The command-line arguments after the input file are available to be expanded verbatim in the input
file as 31, $2, etc. (or ${13, ${2}, etc. if they appear in the middle of strings). This syntax matches Bash’
syntax for expanding command-line arguments, so any person reading an input file with this syntax
already knows what it does. ’

« If one needs a problem where the conductivity depends on x as k(z) = 1 + « then the input is

’k(x) = 1+x ‘

« If a problem needs a temperature distribution given by an algebraic expression T'(z,y,z) =
V&% + y? + z then do

’T(X,y,z) = sqrt(x"2+y™2) + z ‘

+ This syntax for (basic) algebraic expressions matches the common syntax found in Gmsh, Maxima
and many other scientific tools. More complex expressions (e.g. involving hyperbolic tangents)
might differ slightly.

B.11 Rule of Silence

Developers should design programs so that they do not print unnecessary output. This rule
aims to allow other programs and developers to pick out the information they need from a
program’s output without having to parse verbosity.

TL;DR: no PRINT (Or WRITE_RESULTS), no output.

B.12 Rule of Repair

Developers should design programs that fail in a manner that is easy to localize and diagnose
or in other words “fail noisily”. This rule aims to prevent incorrect output from a program
from becoming an input and corrupting the output of other code undetected.

Input errors are detected before the computation is started:

|
$ feenox thermal-error.fee

error: undefined thermal conductivity 'k'
$

Run-time errors (even inside the numerical libraries) are caught with custom handlers.

B.13 Rule of Economy

Developers should value developer time over machine time, because machine cycles today are
relatively inexpensive compared to prices in the 1970s. This rule aims to reduce development
costs of projects.

As explained in the SDS, output is 100% user-defined so only the desired results are directly obtained instead
of needing further digging into tons of undesired data. The approach of “compute and write everything
you can in one single run” made sense in 1970 where CPU time was more expensive than human time, but
not anymore. Once again, the iconic examples are the NAFEMS LE10 & LE11 benchmarks, where just the
required scalar stress at the required location is written into the standard output.

105

https://www.seamplex.com/feenox/doc/sds.html#sec:output
https://www.seamplex.com/feenox/examples/mechanical.html#nafems-le10-thick-plate-pressure-benchmark
https://www.seamplex.com/feenox/examples/mechanical.html#nafems-le11-solid-cylindertapersphere-temperature-benchmark

B.14 Rule of Generation

Developers should avoid writing code by hand and instead write abstract high-level programs
that generate code. This rule aims to reduce human errors and save time.

Some key points:

« Input files are M4-like-macro friendly.
« Parametric runs can be done from scripts through expansion of command line arguments.
« Documentation is created out of simple Markdown sources and assembled as needed.

More saliently, the automatic detection of the available PDEs in src/pdes is an example of this rule. The
autogen.sh would loop over each subdirectory and create a source file src/pdes/parser.c with a function
feenox_pde_parse_problem_type() which then will be part of the actual FeenoX source base as the entry point
for parsing the proBLEM keyword.

B.15 Rule of Optimization

Developers should prototype software before polishing it. This rule aims to prevent developers
from spending too much time for marginal gains.

FeenoX is still “premature” for heavy optimization. Yet, it is (relatively) faster than other alternatives. It
does use link-time optimization to allow for inlining of small routines. There is even a FeenoX benchmark-
ing repository that uses Google’s Benchmark library to prototype code optimization: https://github.com
/seamplex/feenox-benchmark.

B.16 Rule of Diversity

Developers should design their programs to be flexible and open. This rule aims to make pro-
grams flexible, allowing them to be used in ways other than those their developers intended.

FeenoX can read Gmsh files, but they need not necessarily be created by Gmsh. Other meshing formats
(VTK with group names?) are planned to be implemented. Also, either Gmsh or Paraview can be used to
post-process results. But also other formats are planned. See sec. B.17. Diversity is embraced from the
bottom up!

B.17 Rule of Extensibility

Developers should design for the future by making their protocols extensible, allowing for
easy plugins without modification to the program’s architecture by other developers, noting
the version of the program, and more. This rule aims to extend the lifespan and enhance the
utility of the code the developer writes.

The main extensibility feature is that each PDE has a separate source directory. Any of them can be used
as as template to add new PDEs, which are detected at compile time by the Autotools bootstrapping script.

A final note is that FeenoX is GPLv3+. First, this means that extensions and contributions are welcome.
Each author retains the copyright on the contributed code (as long as it is free software). Second, the + is
there for the future.

106

https://github.com/seamplex/feenox-benchmark
https://github.com/seamplex/feenox-benchmark

Appendix C

Appendix: FeenoX history

Very much like Unix in the late 1960s and C in the early 1970s, FeenoX is a third-system effect: I wrote
a first hack that seemed to work better than I had expected. Then I tried to add a lot of features and
complexities which I felt the code needed. After ten years of actual usage, I then realized

1. what was worth keeping,
2. what needed to be rewritten and
3. what had to be discarded.

The first version was called wasora, the second was “The wasora suite” (i.e. a generic framework plus a
bunch of “plugins”, including a thermo-mechanical one named Fino) and then finally FeenoX. The story
that follows explains why I wrote the first hack to begin with.

It was at the movies when I first heard about dynamical systems, non-linear equations and chaos theory.
The year was 1993, I was ten years old and the movie was Jurassic Park. Dr. Ian Malcolm (the character
portrayed by Jeff Goldblum) explained sensitivity to initial conditions in a memorable scene, which is
worth watching again and again. Since then, the fact that tiny variations may lead to unexpected results
has always fascinated me. During high school I attended a very interesting course on fractals and chaos
that made me think further about complexity and its mathematical description. Nevertheless, it was not
not until college that I was able to really model and solve the differential equations that give rise to chaotic
behavior.

In fact, initial-value ordinary differential equations arise in a great variety of subjects in science and engi-
neering. Classical mechanics, chemical kinetics, structural dynamics, heat transfer analysis and dynamical
systems, among other disciplines, heavily rely on equations of the form

x = F(x,1)

During my years of undergraduate student (circa 2004-2007), whenever I had to solve these kind of equa-
tions I had to choose one of the following three options:

1. to program an ad-hoc numerical method such as Euler or Runge-Kutta, matching the requirements
of the system of equations to solve, or

107

https://www.seamplex.com/feenox
https://en.wikipedia.org/wiki/Ian_Malcolm_(character)
https://en.wikipedia.org/wiki/Jeff_Goldblum
https://www.youtube.com/watch?v=n-mpifTiPV4
https://en.wikipedia.org/wiki/Euler_method
https://en.wikipedia.org/wiki/Runge%E2%80%93Kutta_methods

Figure C.1: Dr. Ian Malcolm (Jeff Goldblum) explains sensitivity to initial conditions.

2. to use a standard numerical library such as the GNU Scientific Library and code the equations to
solve into a C program (or maybe in Python), or

3. to use a high-level system such as Octave, Maxima, or some non-free (and worse, see below) pro-
grams.

Of course, each option had its pros and its cons. But none provided the combination of advantages I was
looking for, namely flexibility (option one), efficiency (option two) and reduced input work (partially given
by option three). Back in those days I ended up wandering between options one and two, depending on
the type of problem I had to solve. However, even though one can, with some effort, make the code read
some parameters from a text file, any other drastic change usually requires a modification in the source
code—some times involving a substantial amount of work—and a further recompilation of the code. This
was what I most disliked about this way of working, but I could nevertheless live with it.

Regardless of this situation, during my last year of Nuclear Engineering, the tipping point came along.
Here’s a slightly-fictionalized of a dialog between myself and the teacher at the computer lab (Dr E.), as it
might have happened (or not):

— (Prof.) Open MATLAB.™

— (Me) It’s not installed here. I type mathtlab and it does not work.

— (Prof) It’s spelled mattab.

— (Me) Ok, working. (A screen with blocks and lines connecting them appears)
— (Me) What’s this?

— (Prof.) The point reactor equations.

— (Me) It’s not. These are the point reactor equations:

N
OB LRI Sp A
=1

C'l'(t) = % . ¢(t) —)\i - C;

— (Me) And in any case, I'd write them like this in a computer:

‘ phi dot = (rho-Beta)/Lambda * phi + sum(lambda[i], c[i], i, 1, N)

108

https://en.wikipedia.org/wiki/Ian_Malcolm_(character)
https://en.wikipedia.org/wiki/Jeff_Goldblum
https://www.gnu.org/software/gsl/
https://www.gnu.org/software/octave/index
https://maxima.sourceforge.io/

c dot[i] = beta[i]/Lambda * phi - lambda[i]*c[i] ‘

This conversation forced me to re-think the ODE-solving issue. I could not (and still cannot) understand
why somebody would prefer to solve a very simple set of differential equations by drawing blocks and
connecting them with a mouse with no mathematical sense whatsoever. Fast forward fifteen years, and
what I wrote above is essentially how one would solve the point kinetics equations with FeenoX.

109

Appendix D

Appendix: Downloading & compiling

Please note that FeenoX is a cloud-first back end aimed at advanced users. It does not include
a graphical interface and it is not expected to run in Windows. See this 5-min explanation
about why:

For an easy-to-use web-based front end with FeenoX running in the cloud directly from your
browser see either * CAEplex * SunCAE

Any contribution to make desktop GUIs such as PrePoMax or FreeCAD to work with FeenoX
are welcome.

D.1 Debian/Ubuntu install

sudo apt install feenox

See these links for details about the packages:

+ https://packages.debian.org/unstable/science/feenox
« https://launchpad.net/ubuntu/+source/feenox

D.2 Downloads

Debian package https://packages.debian.org/unstable/science/feenox
Ubuntu package https://launchpad.net/ubuntu/+source/feenox
GNU/Linux binaries https://www.seamplex.com/feenox/dist/linux
Source tarballs https://www.seamplex.com/feenox/dist/src

Github repository https://github.com/seamplex/feenox/

Generic GNU/Linux binaries are provided as statically-linked executables for convenience. They do not
support MUMPS nor MPI and have only basic optimization flags. Please compile from source for high-end
applications. See detailed compilation instructions.

110

https://en.wikipedia.org/wiki/Front_and_back_ends
https://www.caeplex.com
htts://www.seamplex.com/suncae
https://prepomax.fs.um.si/
http://https://www.freecadweb.org
https://packages.debian.org/unstable/science/feenox
https://launchpad.net/ubuntu/+source/feenox
https://packages.debian.org/unstable/science/feenox
https://launchpad.net/ubuntu/+source/feenox
https://www.seamplex.com/feenox/dist/linux
https://www.seamplex.com/feenox/dist/src
https://github.com/seamplex/feenox/
doc/compilation.md

Be aware that FeenoX does not have a GUIL Read the documentation, especially the descrip-
tion and the FAQs. Ask for help on the GitHub discussions page if you do now understand
what this means.

You can still use FeenoX through a web-based UI through SunCAE

D.2.1 Statically-linked binaries

Browse to https://www.seamplex.com/feenox/dist/ and check what the latest version for your architecture
is. Then do
|

feenox version=1.1
wget -c https://www.seamplex.com/feenox/dist/1linux/feenox-v${feenox version}-linux-amd64.tar.gz

tar xzf feenox-v${feenox version}-linux-amd64.tar.gz
sudo cp feenox-v${feenox version}-linux-amd64/bin/feenox /usr/local/bin

You’ll have the binary under bin and examples, documentation, manpage, etc under share. Copy bin/
feenox into somewhere in the paTH and that will be it. If you are root, do

|
sudo cp feenox-v${feenox version}-linux-amd64/bin/feenox /usr/local/bin

If you are not root, the usual way is to create a directory $HoMe/bin and add it to your local path. If you have
not done it already, do

|
mkdir -p $HOME/bin

echo 'expot PATH=$PATH:$HOME/bin' >> .bashrc

Then finally copy bin/feenox to $HOME/bin

cp feenox-v${feenox version}-linux-amd64/bin/feenox $HOME/bin

Check if it works by calling feenox from any directory (you might need to open a new terminal so .bashrc

is re-read):
|
$ feenox
FeenoX v1.1-994ddf72
a cloud-first free no-fee no-X uniX-like finite-element(ish) computational engineering tool

usage: feenox [options] inputfile [replacement arguments] [petsc options]

-h, --help display options and detailed explanations of command-line usage

-v, --version display brief version information and exit

-V, --versions display detailed version information

-c, --check validates if the input file is sane or not

- -pdes list the types of PROBLEMs that FeenoX can solve, one per line
--elements info output a document with information about the supported element types
--ast dump an abstract syntax tree of the input

--linear force FeenoX to solve the PDE problem as linear

--non-linear force FeenoX to solve the PDE problem as non-linear

Run with --help for further explanations.

$

111

https://seamplex.com/feenox/doc/
https://www.seamplex.com/feenox/doc/feenox-desc.html
https://www.seamplex.com/feenox/doc/feenox-desc.html
https://seamplex.com/feenox/doc/FAQ.html
https://github.com/seamplex/feenox/discussions
https://www.seamplex.com/suncae.
https://www.seamplex.com/feenox/dist/

D.2.2 Compile from source

To compile the source tarball, proceed as follows. This procedure does not need git nor autoconf but a new
tarball has to be downloaded each time there is a new FeenoX version.

1. Install mandatory dependencies

|
sudo apt-get update

sudo apt-get install gcc make libgsl-dev

If you cannot install libgsl-dev, you can have the configure script to download and compile it for you.
See point 4 below.

2. Install optional dependencies (of course these are optional but recommended)
|

sudo apt-get install libsundials-dev petsc-dev slepc-dev

3. Download and un-compress FeenoX source tarball. Browse to https://www.seamplex.com/feenox/
dist/src/ and pick the latest version:
|

wget https://www.seamplex.com/feenox/dist/src/feenox-vl.1l.tar.gz

tar xvzf feenox-vl.l.tar.gz
|

4. Configure, compile & make

|
cd feenox-vl.1

./configure
make -j4

If you cannot (or do not want) to use libgsl-dev from a package repository, call configure with -- +

enable-download-gsl:

./configure --enable-download-gsl

If you do not have Internet access, get the tarball manually, copy it to the same directory as
configure and run again.

5. Run test suite (optional)

make check

6. Install the binary system wide (optional)

|
sudo make install

D.2.3 Github repository

The Git repository has the latest sources repository. To compile, proceed as follows. If something goes
wrong and you get an error, do not hesitate to ask in FeenoX’s discussion page.

If you do not have Git or Autotools, download a source tarball and proceed with the usual
configure & make procedure. See these instructions.

112

https://www.seamplex.com/feenox/dist/src/
https://www.seamplex.com/feenox/dist/src/
https://github.com/seamplex/feenox/discussions
https://seamplex.com/feenox/dist/src/
doc/source.md

1. Install mandatory dependencies

|
sudo apt-get update

sudo apt-get install git build-essential make automake autoconf libgsl-dev

If you cannot install 1ibgsi-dev but still have git and the build toolchain, you can have the configure
script to download and compile it for you. See point 4 below.

2. Install optional dependencies (of course these are optional but recommended)
|

|
sudo apt-get install libsundials-dev petsc-dev slepc-dev

3. Clone Github repository

| |
git clone https://github.com/seamplex/feenox
| \

4. Bootstrap, configure, compile & make
|

cd feenox
./autogen.sh
./configure
make -j4

If you cannot (or do not want to) use libgsl-dev from a package repository, call configure with -- +

enable-download-gsl:
|

./configure --enable-download-gsl

If you do not have Internet access, get the tarball manually, copy it to the same directory as
configure and run again. See the detailed compilation instructions for an explanation.

5. Run test suite (optional)

| |
|IHHHHIIHHHHHIII
| \

6. Install the binary system wide (optional)

sudo make install

If you do not have root permissions, configure with your home directory as prefix and

then make install as a regular user:

|
./configure --prefix=$HOME

make
make install

To stay up to date, pull and then autogen, configure and make (and optionally install):

|
git pull
./autogen.sh

./configure
make -j4
sudo make install

See the Compilation Guide for details. Ask in the GitHub Discussions page for help.

113

compilation.md
doc/compile.md
https://github.com/seamplex/feenox/discussions

D.3 Licensing

FeenoX is distributed under the terms of the GNU General Public License version 3 or (at your option) any
later version. The following text was borrowed from the Gmsh documentation. Replacing “Gmsh” with
“FeenoX” gives:

FeenoX is “free software”; this means that everyone is free to use it and to redistribute it on a
free basis. FeenoX is not in the public domain; it is copyrighted and there are restrictions on its
distribution, but these restrictions are designed to permit everything that a good cooperating
citizen would want to do. What is not allowed is to try to prevent others from further sharing
any version of FeenoX that they might get from you.

Specifically, we want to make sure that you have the right to give away copies of FeenoX, that
you receive source code or else can get it if you want it, that you can change FeenoX or use
pieces of FeenoX in new free programs, and that you know you can do these things.

To make sure that everyone has such rights, we have to forbid you to deprive anyone else of
these rights. For example, if you distribute copies of FeenoX, you must give the recipients all
the rights that you have. You must make sure that they, too, receive or can get the source code.
And you must tell them their rights.

Also, for our own protection, we must make certain that everyone finds out that there is no
warranty for FeenoX. If FeenoX is modified by someone else and passed on, we want their
recipients to know that what they have is not what we distributed, so that any problems
introduced by others will not reflect on our reputation.

The precise conditions of the license for FeenoX are found in the General Public License that
accompanies the source code. Further information about this license is available from the
GNU Project webpage http://www.gnu.org/copyleft/gpl-faq.html.

FeenoX is licensed under the terms of the GNU General Public License version 3 or, at the user convenience,
any later version. This means that users get the four essential freedoms:!

0. The freedom to run the program as they wish, for any purpose.

1. The freedom to study how the program works, and change it so it does their computing as they wish.
2. The freedom to redistribute copies so they can help others.

3. The freedom to distribute copies of their modified versions to others.

So a free program has to be open source, but it also has to explicitly provide the four freedoms above
both through the written license and through appropriate mechanisms to get, modify, compile, run and
document these modifications using well-established and/or reasonable straightforward procedures. That
is why licensing FeenoX as GPLv3+ also implies that the source code and all the scripts and makefiles
needed to compile and run it are available for anyone that requires it (i.e. it is compiled with ./configure +

&& make). Anyone wanting to modify the program either to fix bugs, improve it or add new features is
free to do so. And if they do not know how to program, the have the freedom to hire a programmer to do

"There are some examples of pieces of computational software which are described as “open source” in which even the first
of the four freedoms is denied. The most iconic case is that of Android, whose sources are readily available online but there is no
straightforward way of updating one’s mobile phone firmware with a customized version, not to mention vendor and hardware
lock ins and the possibility of bricking devices if something unexpected happens. In the nuclear industry, it is the case of a Monte
Carlo particle-transport program that requests users to sign an agreement about the objective of its usage before allowing its
execution. The software itself might be open source because the source code is provided after signing the agreement, but it is not
free (as in freedom) at all.

114

http://www.gnu.org/copyleft/gpl.html
http://gmsh.info/doc/texinfo/gmsh.html#Copying-conditions
https://github.com/seamplex/feenox/blob/master/COPYING
http://www.gnu.org/copyleft/gpl-faq.html
https://www.gnu.org/licenses/gpl-3.0

it without needing to ask permission to the original authors. Even more, the documentation is released
under the terms of the Creative Commons Attribution-ShareAlike 4.0 International License so these new
(or modified) features can be properly documented as well.

Nevertheless, since these original authors are the copyright holders, they still can use it to either enforce
or prevent further actions from the users that receive FeenoX under the GPLv3+. In particular, the license
allows re-distribution of modified versions only if

a. they are clearly marked as different from the original, and
b. they are distributed under the same terms of the GPLv3+.

There are also some other subtle technicalities that need not be discussed here such as

- what constitutes a modified version (which cannot be redistributed under a different license)
- what is an aggregate (in which each part be distributed under different licenses)
+ usage over a network and the possibility of using AGPL instead of GPL to further enforce freedom

These issues are already taken into account in the FeenoX licensing scheme.

It should be noted that not only is FeenoX free and open source, but also all of the libraries it depends
on (and their dependencies) also are. It can also be compiled using free and open source build tool chains
running over free and open source operating systems.

These detailed compilation instructions are aimed at amd64 Debian-based GNU/Linux distributions. The
compilation procedure follows the POSIX standard, so it should work in other operating systems and ar-
chitectures as well. Distributions not using apt for packages (i.e. yum) should change the package installation
commands (and possibly the package names). The instructions should also work for in MacOS, although
the apt-get commands should be replaced by brew or similar. Same for Windows under Cygwin, the pack-
ages should be installed through the Cygwin installer. WSL was not tested, but should work as well.

D.4 Quickstart

Note that the quickest way to get started is to download an already-compiled statically-linked binary
executable. Note that getting a binary is the quickest and easiest way to go but it is the less flexible one.
Mind the following instructions if a binary-only option is not suitable for your workflow and/or you do
need to compile the source code from scratch.

On a GNU/Linux box (preferably Debian-based), follow these quick steps. See sec. D.5 for the actual
detailed explanations.

The Git repository has the latest sources repository. To compile, proceed as follows. If something goes
wrong and you get an error, do not hesitate to ask in FeenoX’s discussion page.

If you do not have Git or Autotools, download a source tarball and proceed with the usual
configure & make procedure. See these instructions.

1. Install mandatory dependencies

|
sudo apt-get update

sudo apt-get install git build-essential make automake autoconf libgsl-dev

If you cannot install 1ibgsi-dev but still have git and the build toolchain, you can have the configure
script to download and compile it for you. See point 4 below.

115

https://seamplex.com/feenox/doc/
https://creativecommons.org/licenses/by-sa/4.0/
https://en.wikipedia.org/wiki/GNU_Affero_General_Public_License
https://en.wikipedia.org/wiki/POSIX
https://www.cygwin.com/
https://www.seamplex.com/feenox/#download
https://github.com/seamplex/feenox/discussions
https://seamplex.com/feenox/dist/src/
doc/source.md

2. Install optional dependencies (of course these are optional but recommended)

sudo apt-get install libsundials-dev petsc-dev slepc-dev

3. Clone Github repository

git clone https://github.com/seamplex/feenox

4. Bootstrap, configure, compile & make

|
cd feenox

./autogen.sh
./configure
make -j4

If you cannot (or do not want to) use libgsl-dev from a package repository, call configure with -- +

enable-download-gsl:

./configure --enable-download-gsl

If you do not have Internet access, get the tarball manually, copy it to the same directory as
configure and run again. See the detailed compilation instructions for an explanation.

5. Run test suite (optional)

|
make check

6. Install the binary system wide (optional)
|

sudo make install

If you do not have root permissions, configure with your home directory as prefix and

then make install as a regular user:
|

./configure --prefix=$HOME
make
make install

To stay up to date, pull and then autogen, configure and make (and optionally install):

|
git pull

./autogen.sh

./configure
make -j4
sudo make install

D.5 Detailed configuration and compilation

The main target and development environment is Debian GNU/Linux, although it should be possible to
compile FeenoX in any free GNU/Linux variant (and even the in non-free MacOS and/or Windows plat-
forms) running in virtually any hardware platform. FeenoX can run be run either in HPC cloud servers or
a Raspberry Pi, and almost everything that sits in the middle.

116

compilation.md
https://www.debian.org/

Following the Unix philosophy discussed in the SDS, FeenoX re-uses a lot of already-existing high-quality
free and open source libraries that implement a wide variety of mathematical operations. This leads to a
number of dependencies that FeenoX needs in order to implement certain features.

There is only one dependency that is mandatory, namely GNU GSL (see sec. D.5.1.1), which if it not found
then FeenoX cannot be compiled. All other dependencies are optional, meaning that FeenoX can be com-
piled but its capabilities will be partially reduced.

As per the SRS, all dependencies have to be available on mainstream GNU/Linux distributions and have
to be free and open source software. But they can also be compiled from source in case the package
repositories are not available or customized compilation flags are needed (i.e. optimization or debugging
settings).

In particular, PETSc (and SLEPc) also depend on other mathematical libraries to perform particular oper-
ations such as low-level linear algebra operations. These extra dependencies can be either free (such as
LAPACK) or non-free (such as Intel’s MKL), but there is always at least one combination of a working
setup that involves only free and open source software which is compatible with FeenoX licensing terms
(GPLv3+). See the documentation of each package for licensing details.

D.5.1 Mandatory dependencies

FeenoX has one mandatory dependency for run-time execution and the standard build toolchain for com-
pilation. It is written in C99 so only a C compiler is needed, although make is also required. Free and open
source compilers are favored. The usual C compiler is gcc but clang or Intel’s icc and the newer icx can also
be used.

Note that there is no need to have a Fortran nor a C++ compiler to build FeenoX. They might be needed
to build other dependencies (such as PETSc and its dependencies), but not to compile FeenoX if all the
dependencies are installed from the operating system’s package repositories. In case the build toolchain
is not already installed, do so with

sudo apt-get install gcc make

If the source is to be fetched from the Git repository then not only is git needed but also autoconf and
automake since the configure script is not stored in the Git repository but the autogen.sh script that bootstraps
the tree and creates it. So if instead of compiling a source tarball one wants to clone from GitHub, these
packages are also mandatory:

sudo apt-get install git automake autoconf

Again, chances are that any existing GNU/Linux box has all these tools already installed.

D.5.1.1 The GNU Scientific Library

The only run-time dependency is GNU GSL (not to be confused with Microsoft GSL). It can be installed
with

sudo apt-get install libgsl-dev

In case this package is not available or you do not have enough permissions to install system-wide packages,
there are two options.

117

SDS.md
https://www.gnu.org/software/gsl/
SRS.md
https://petsc.org/release/
https://slepc.upv.es/
http://www.netlib.org/lapack/
https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl.html
https://github.com/seamplex/feenox/
https://www.gnu.org/software/gsl/
https://github.com/microsoft/GSL

1. Pass the option --enable-download-gst to the configure script below.
2. Manually download, compile and install GNU GSL

If the configure script cannot find both the headers and the actual library, it will refuse to proceed. Note
that the FeenoX binaries already contain a static version of the GSL so it is not needed to have it installed
in order to run the statically-linked binaries.

D.5.2 Optional dependencies

FeenoX has three optional run-time dependencies. It can be compiled without any of these, but function-
ality will be reduced:

« SUNDIALS provides support for solving systems of ordinary differential equations (ODEs) or
differential-algebraic equations (DAEs). This dependency is needed when running inputs with the
PHASE_SPACE keyword.

« PETSc provides support for solving partial differential equations (PDEs). This dependency is needed
when running inputs with the prosLEM keyword.

« SLEPc provides support for solving eigen-value problems in partial differential equations (PDEs).
This dependency is needed for inputs with prosLEM types with eigen-value formulations such as

modal and neut ron_sn.
In absence of all these, FeenoX can still be used to

« solve general mathematical problems such as the ones to compute the Fibonacci sequence or the
Logistic map,

« operate on functions, either algebraically or point-wise interpolated such as Computing the deriva-
tive of a function as a Unix filter

« read, operate over and write meshes,

. etc.

These optional dependencies have to be installed separately. There is no option to have configure to down-
load them as with --enable-download-gsl. When running the test suite (sec. D.5.6), those tests that need an
optional dependency which was not found at compile time will be skipped.

D.5.2.1 SUNDIALS

SUNDIALS is a SUite of Nonlinear and DIfferential/ALgebraic equation Solvers. It is used by FeenoX to
solve dynamical systems casted as DAEs with the keyword pHASE sPAcE, like the Lorenz system.

Install either by doing

| |
sudo apt-get install libsundials-dev
| \

or by following the instructions in the documentation.

D.5.2.2 PETSc

The Portable, Extensible Toolkit for Scientific Computation, pronounced PET-see (/pet-siz/), is a suite of
data structures and routines for the scalable (parallel) solution of scientific applications modeled by partial
differential equations. It is used by FeenoX to solve PDEs with the keyword prosLEM, like the NAFEMS LE10
benchmark problem.

118

https://www.gnu.org/software/gsl/
https://computing.llnl.gov/projects/sundials
https://petsc.org/
https://slepc.upv.es/
https://www.seamplex.com/feenox/examples/#the-fibonacci-sequence
https://www.seamplex.com/feenox/examples/#the-logistic-map
https://www.seamplex.com/feenox/examples/#computing-the-derivative-of-a-function-as-a-unix-filter
https://www.seamplex.com/feenox/examples/#computing-the-derivative-of-a-function-as-a-unix-filter
https://computing.llnl.gov/projects/sundials
https://www.seamplex.com/feenox/doc/feenox-manual.html#phase_space
https://www.seamplex.com/feenox/examples/#lorenz-attractor-the-one-with-the-butterfly
(https://petsc.org/)
https://www.seamplex.com/feenox/doc/feenox-manual.html#problem
https://www.seamplex.com/feenox/examples/#nafems-le10-thick-plate-pressure-benchmark
https://www.seamplex.com/feenox/examples/#nafems-le10-thick-plate-pressure-benchmark

Install either by doing

| |
sudo apt-get install petsc-dev
| \

or by following the instructions in the documentation.
Note that

+ Configuring and compiling PETSc from scratch might be difficult the first time. It has a lot of depen-
dencies and options. Read the official documentation for a detailed explanation.

« There is a huge difference in efficiency between using PETSc compiled with debugging symbols and
with optimization flags. Make sure to configure --with-debugging=6 for FeenoX production runs and
leave the debugging symbols (which is the default) for development and debugging only.

+ FeenoX needs PETSc to be configured with real double-precision scalars. It will compile but will
complain at run-time when using complex and/or single or quad-precision scalars.

« FeenoX honors the PETsc_DIR and PETSC_ARCH environment variables when executing configure. If these
two do not exist or are empty, it will try to use the default system-wide locations (i.e. the petsc-dev
package).

D.5.2.3 SLEPc

The Scalable Library for Eigenvalue Problem Computations, is a software library for the solution of large
scale sparse eigenvalue problems on parallel computers. It is used by FeenoX to solve PDEs with the
keyword prosLEM that need eigen-value computations, such as modal analysis of a cantilevered beam.

Install either by doing

| |
sudo apt-get install slepc-dev
| \

or by following the instructions in the documentation.
Note that

« SLEPc is an extension of PETSc so the latter has to be already installed and configured.

« FeenoX honors the sLerc pIR environment variable when executing configure. If it does not exist or
is empty it will try to use the default system-wide locations (i.e. the siepc-dev package).

+ IfPETSc was configured with - -download-stepc then the sLepc_DIR variable has to be set to the directory
inside PETSC_DIR where SLEPc was cloned and compiled.

D.5.3 FeenoX source code
There are two ways of getting FeenoX’s source code:

1. Cloning the GitHub repository at https://github.com/seamplex/feenox
2. Downloading a source tarball from https://seamplex.com/feenox/dist/src/

D.5.3.1 Git repository

The main Git repository is hosted on GitHub at https://github.com/seamplex/feenox. It is public so it
can be cloned either through HTTPS or SSH without needing any particular credentials. It can also be
forked freely. See the Programming Guide for details about pull requests and/or write access to the main
repository.

119

https://petsc.org/release/install/
https://slepc.upv.es/
https://www.seamplex.com/feenox/doc/feenox-manual.html#problem
https://www.seamplex.com/feenox/examples/#five-natural-modes-of-a-cantilevered-wire
https://github.com/seamplex/feenox
https://seamplex.com/feenox/dist/src/
https://github.com/seamplex/feenox
programming.md

Ideally, the main branch should have a usable snapshot. All other branches can contain code that might not
compile or might not run or might not be tested. If you find a commit in the main branch that does not
pass the tests, please report it in the issue tracker ASAP.

After cloning the repository

git clone https://github.com/seamplex/feenox

the autogen.sh script has to be called to bootstrap the working tree, since the configure script is not stored
in the repository but created from configure.ac (which is in the repository) by autogen.sh.

Similarly, after updating the working tree with

git pull

it is recommended to re-run the autogen.sh script. It will do a make clean and re-compute the version string.

D.5.3.2 Source tarballs

When downloading a source tarball, there is no need to run autogen.sh since the configure script is already
included in the tarball. This method cannot update the working tree. For each new FeenoX release, the
whole source tarball has to be downloaded again.

D.5.4 Configuration

To create a proper Makefile for the particular architecture, dependencies and compilation options, the script
configure has to be executed. This procedure follows the GNU Coding Standards.

./configure

Without any particular options, configure will check if the mandatory GNU Scientific Library is available
(both its headers and run-time library). If it is not, then the option --enable-download-gst can be used. This
option will try to use wget (which should be installed) to download a source tarball, uncompress, configure
and compile it. If these steps are successful, this GSL will be statically linked into the resulting FeenoX
executable. If there is no internet connection, the configure script will say that the download failed. In that
case, get the indicated tarball file manually, copy it into the current directory and re-run ./configure.

The script will also check for the availability of optional dependencies. At the end of the execution, a
summary of what was found (or not) is printed in the standard output:

$./configure

Summary of dependencies

GNU Scientific Library from system
SUNDIALS IDA yes

PETSc yes /usr/lib/petsc
SLEPc no

If for some reason one of the optional dependencies is available but FeenoX should not use it, then pass
--without-sundials, --without-petsc and/or --without-slepc as arguments. For example

120

https://www.gnu.org/prep/standards/
https://www.gnu.org/software/gsl/

$./configure --without-sundials --without-petsc

Summary of dependencies

GNU Scientific Library from system
SUNDIALS no
PETSc no
SLEPc no
.1

If configure complains about contradicting values from the cached ones, run autogen.sh again before
configure and/or clone/uncompress the source tarball in a fresh location.

To see all the available options run
|

./configure --help

D.5.5 Source code compilation

After the successful execution of configure, a Makefile is created. To compile FeenoX, just execute

make

Compilation should take a dozen of seconds. It can be even sped up by using the -j option

make -j8

The binary executable will be located in the src directory but a copy will be made in the base directory as
well. Test it by running without any arguments

|
$./feenox

FeenoX v0.2.14-gbbf48c9
a free no-fee no-X uniX-like finite-element(ish) computational engineering tool

usage: feenox [options] inputfile [replacement arguments] [petsc options]
-h, --help display options and detailed explanations of command-line usage
-v, --version display brief version information and exit

-V, --versions display detailed version information

Run with --help for further explanations.
$

The -v (or --version) option shows the version and a copyright notice:

|
$./feenox -v
FeenoX v0.2.14-gbbf48c9
a free no-fee no-X uniX-like finite-element(ish) computational engineering tool

Copyright © 2009--2022 https://seamplex.com/feenox
GNU General Public License v3+, https://www.gnu.org/licenses/gpl.html.
FeenoX is free software: you are free to change and redistribute it.

121

There is NO WARRANTY, to the extent permitted by law.

$

The -v (or --versions) option shows the dates of the last commits, the compiler options and the versions of
the linked libraries:

|
$./feenox -V

FeenoX v0.1.24-g6cfe063
a free no-fee no-X uniX-like finite-element(ish) computational engineering tool

Last commit date : Sun Aug 29 11:34:04 2021 -0300

Build date : Sun Aug 29 11:44:50 2021 -0300

Build architecture : linux-gnu x86 64

Compiler version : gcc (Debian 10.2.1-6) 10.2.1 20210110

Compiler expansion : gcc -Wl,-z,relro -I/usr/include/x86 64-linux-gnu/mpich -L/usr/1ib/x86 64-linux-gnu <=
-lmpich

Compiler flags : -03

Builder : gtheler@chalmers

GSL version : 2.6

SUNDIALS version 1 4.1.0

PETSc version : Petsc Release Version 3.14.5, Mar 03, 2021

PETSc arch :

PETSc options : --build=x86 64-linux-gnu --prefix=/usr --includedir=${prefix}/include --mandir=${ <
prefix}/share/man --infodir=${prefix}/share/info --sysconfdir=/etc --localstatedir=/var --with- <
option-checking=0 --with-silent-rules=0 --libdir=${prefix}/1lib/x86 64-linux-gnu --runstatedir=/run <>
--with-maintainer-mode=0 --with-dependency-tracking=0 --with-debugging=0 --shared-library-extension <=
= real --with-shared-libraries --with-pic=1 --with-cc=mpicc --with-cxx=mpicxx --with-fc=mpif90 -- <>
with-cxx-dialect=C++11 --with-opencl=1 --with-blas-lib=-1blas --with-lapack-lib=-1lapack --with- <>
scalapack=1 --with-scalapack-lib=-1scalapack-openmpi --with-ptscotch=1 --with-ptscotch-include=/usr <
/include/scotch --with-ptscotch-1ib="-1ptesmumps -lptscotch -lptscotcherr" --with-fftw=1 --with- <
fftw-include="[]" --with-fftw-lib="-1fftw3 -1fftw3 mpi" --with-superlu dist=1 --with-superlu dist- <>
include=/usr/include/superlu-dist --with-superlu dist-lib=-lsuperlu_dist --with-hdf5-include=/usr/ <>
include/hdf5/openmpi --with-hdf5-1ib="-L/usr/1ib/x86 64-linux-gnu/hdf5/openmpi -L/usr/1ib/x86 64- <—
linux-gnu/openmpi/lib -1hdf5 -lmpi" --CXX LINKER FLAGS=-W1,--no-as-needed --with-hypre=1 --with- <>
hypre-include=/usr/include/hypre --with-hypre-lib=-1HYPRE core --with-mumps=1 --with-mumps-include <>
="[]1" --with-mumps-1lib="-1ldmumps -lzmumps -lsmumps -lcmumps -lmumps common -lpord" --with- <>
suitesparse=1 --with-suitesparse-include=/usr/include/suitesparse --with-suitesparse-lib="-lumfpack <

-lamd -lcholmod -lklu" --with-superlu=1l --with-superlu-include=/usr/include/superlu --with-superlu <>
-lib=-1superlu --prefix=/usr/lib/petscdir/petsc3.14/x86 64-linux-gnu-real --PETSC ARCH=x86 64-linux <
-gnu-real CFLAGS="-g -02 -ffile-prefix-map=/build/petsc-pVufYp/petsc-3.14.5+dfsgl=. -flto=auto -
ffat-lto-objects -fstack-protector-strong -Wformat -Werror=format-security -fPIC" CXXFLAGS="-g -02 <>
-ffile-prefix-map=/build/petsc-pVufYp/petsc-3.14.5+dfsgl=. -flto=auto -ffat-lto-objects -fstack- <
protector-strong -Wformat -Werror=format-security -fPIC" FCFLAGS="-g -02 -ffile-prefix-map=/build/ <>
petsc-pVufYp/petsc-3.14.5+dfsgl=. -flto=auto -ffat-lto-objects -fstack-protector-strong -fPIC - <>
ffree-line-length-0" FFLAGS="-g -02 -ffile-prefix-map=/build/petsc-pVufYp/petsc-3.14.5+dfsgl=. - <>
flto=auto -ffat-lto-objects -fstack-protector-strong -fPIC -ffree-line-length-0" CPPFLAGS="-Wdate- <~
time -D_FORTIFY_SOURCE=2" LDFLAGS="-WLl,-Bsymbolic-functions -flto=auto -Wl,-z,relro -fPIC" <>
MAKEFLAGS=w

SLEPc version : SLEPc Release Version 3.14.2, Feb 01, 2021

$

D.5.6 Test suite

The test directory contains a set of test cases whose output is known so that unintended regressions can
be detected quickly (see the programming guide for more information). The test suite ought to be run after
each modification in FeenoX’s source code. It consists of a set of scripts and input files needed to solve

122

https://github.com/seamplex/feenox/tree/main/tests
programming.md

dozens of cases. The output of each execution is compared to a reference solution. In case the output does
not match the reference, the test suite fails.

After compiling FeenoX as explained in sec. D.5.5, the test suite can be run with make check. Ideally every-
thing should be green meaning the tests passed:

|
$ make check

Making check in src

make[1]: Entering directory '/home/gtheler/codigos/feenox/src'
make[1]: Nothing to be done for 'check'

make[1]: Leaving directory '/home/gtheler/codigos/feenox/src'
make[1]: Entering directory '/home/gtheler/codigos/feenox'
cp -r src/feenox .

make check-TESTS

make[2]: Entering directory '/home/gtheler/codigos/feenox'
make[3]: Entering directory '/home/gtheler/codigos/feenox'
XFAIL: tests/abort.sh

PASS: tests/algebraic expr.sh

PASS: tests/beam-modal.sh

PASS: tests/beam-ortho.sh

PASS: tests/builtin.sh

PASS: tests/cylinder-traction-force.sh

PASS: tests/default_argument_value.sh

PASS: tests/expressions constants.sh

PASS: tests/expressions variables.sh

PASS: tests/expressions_functions.sh

PASS: tests/exp.sh

PASS: tests/i-beam-euler-bernoulli.sh

PASS: tests/iaea-pwr.sh

PASS: tests/iterative.sh

PASS: tests/fit.sh

PASS: tests/function_algebraic.sh

PASS: tests/function_data.sh

PASS: tests/function file.sh

PASS: tests/function vectors.sh

PASS: tests/integral.sh

PASS: tests/laplace2d.sh

PASS: tests/materials.sh

PASS: tests/mesh.sh

PASS: tests/moment-of-inertia.sh

PASS: tests/nafems-lel.sh

PASS: tests/nafems-1el0.sh

PASS: tests/nafems-lell.sh

PASS: tests/nafems-tl-4.sh

PASS: tests/nafems-t2-3.sh

PASS: tests/neutron diffusion src.sh

PASS: tests/neutron diffusion keff.sh

PASS: tests/parallelepiped.sh

PASS: tests/point-kinetics.sh

PASS: tests/print.sh

PASS: tests/thermal-1d.sh

PASS: tests/thermal-2d.sh

PASS: tests/trig.sh

PASS: tests/two-cubes-isotropic.sh

PASS: tests/two-cubes-orthotropic.sh

PASS: tests/vector.sh

XFAIL: tests/xfail-few-properties-ortho-young.sh
XFAIL: tests/xfail-few-properties-ortho-poisson.sh

1
1

XFAIL: tests/xfail-few-properties-ortho-shear.sh

Testsuite summary for feenox v0.2.6-g3237ce9

TOTAL: 43
PASS:
SKIP:
XFAIL:
FAIL:
XPASS:
ERROR:

make[3]: Leaving directory '/home/gtheler/codigos/feenox'
make[2]: Leaving directory '/home/gtheler/codigos/feenox'
make[1l]: Leaving directory '/home/gtheler/codigos/feenox'
$

The xraIL result means that those cases are expected to fail (they are there to test if FeenoX can handle
errors). Failure would mean they passed. In case FeenoX was not compiled with any optional dependency,

the corresponding tests will be skipped. Skipped tests do not mean any failure, but that the compiled
FeenoX executable does not have the full capabilities. For example, when configuring with ./configure +
--without-petsc (but with SUNDIALS), the test suite output should be a mixture of green and blue:

$./configure --without-petsc

[...]
configure: creating ./src/version.h

Summary of dependencies

GNU Scientific Library from system
SUNDIALS yes
PETSc no
SLEPc no
Compiler gcc
checking that generated files are newer than configure...
configure: creating ./config.status
config.status: creating Makefile
config.status: creating src/Makefile
config.status: creating doc/Makefile
config.status: executing depfiles commands
$ make
loool
$ make check
Making check in src
make[1l]: Entering directory '/home/gtheler/codigos/feenox/src'
make[1l]: Nothing to be done for 'check'
make[1l]: Leaving directory '/home/gtheler/codigos/feenox/src'
make[1l]: Entering directory '/home/gtheler/codigos/feenox'
cp -r src/feenox .
make check-TESTS
make[2]: Entering directory '/home/gtheler/codigos/feenox'
make[3]: Entering directory '/home/gtheler/codigos/feenox'
XFAIL: tests/abort.sh
PASS: tests/algebraic expr.sh
SKIP: tests/beam-modal.sh
SKIP: tests/beam-ortho.sh
PASS: tests/builtin.sh

SKIP: tests/cylinder-traction-force.sh
PASS: tests/default_argument value.sh
PASS: tests/expressions constants.sh
PASS: tests/expressions variables.sh
PASS: tests/expressions_functions.sh
PASS: tests/exp.sh

SKIP: tests/i-beam-euler-bernoulli.sh
SKIP: tests/iaea-pwr.sh

PASS: tests/iterative.sh

PASS: tests/fit.sh

PASS: tests/function_algebraic.sh
PASS: tests/function_data.sh

PASS: tests/function file.sh

PASS: tests/function_vectors.sh

PASS: tests/integral.sh

SKIP: tests/laplace2d.sh

PASS: tests/materials.sh

PASS: tests/mesh.sh

PASS: tests/moment-of-inertia.sh

SKIP: tests/nafems-lel.sh

SKIP: tests/nafems-1el0.sh

SKIP: tests/nafems-lell.sh

SKIP: tests/nafems-tl-4.sh

SKIP: tests/nafems-t2-3.sh

SKIP: tests/neutron diffusion src.sh
SKIP: tests/neutron_diffusion_keff.sh
SKIP: tests/parallelepiped.sh

PASS: tests/point-kinetics.sh

PASS: tests/print.sh

SKIP: tests/thermal-1d.sh

SKIP: tests/thermal-2d.sh

PASS: tests/trig.sh

SKIP: tests/two-cubes-isotropic.sh
SKIP: tests/two-cubes-orthotropic.sh
PASS: tests/vector.sh

SKIP: tests/xfail-few-properties-ortho-young.sh
SKIP: tests/xfail-few-properties-ortho-poisson.sh
SKIP: tests/xfail-few-properties-ortho-shear.sh

Testsuite summary for feenox v0.2.6-g3237ce9

TOTAL: 43
PASS: 21
SKIP: 21
XFAIL:
FAIL:
XPASS:
ERROR:

make[3]: Leaving directory '/home/gtheler/codigos/feenox'
make[2]: Leaving directory '/home/gtheler/codigos/feenox'
make[1l]: Leaving directory '/home/gtheler/codigos/feenox"'

$
|

To illustrate how regressions can be detected, let us add a bug deliberately and re-run the test suite.

Edit the source file that contains the shape functions of the second-order tetrahedra src/mesh/tet10.c, find
the function feenox_mesh_tet10_h() and randomly change a sign, i.e. replace

‘ return t*(2*t-1);

with

‘ return t*(2*t+l);

Save, recompile, and re-run the test suite to obtain some red:

|
$ git diff src/mesh/

diff --git a/src/mesh/tetl0.c b/src/mesh/tetl0.c
index 72bc838..293c290 100644
--- a/src/mesh/tetl0.c
+++ b/src/mesh/tetl0.c
@@ -227,7 +227,7 @@ double feenox mesh tetl® h(int j, double *vec r) {
return s*(2*s-1)
break;
case 3:
return t*(2*t-1)
return t*(2*t+1);
break;

case 4:
$ make
[...1
$ make check
Making check in src
make[1l]: Entering directory '/home/gtheler/codigos/feenox/src'
make[1]: Nothing to be done for 'check'
make[1l]: Leaving directory '/home/gtheler/codigos/feenox/src'
make[1l]: Entering directory '/home/gtheler/codigos/feenox'
cp -r src/feenox .
make check-TESTS
make[2]: Entering directory '/home/gtheler/codigos/feenox"
make[3]: Entering directory '/home/gtheler/codigos/feenox'
XFAIL: tests/abort.sh
PASS: tests/algebraic_expr.sh
FAIL: tests/beam-modal.sh
PASS: tests/beam-ortho.sh
PASS: tests/builtin.sh
PASS: tests/cylinder-traction-force.sh
PASS: tests/default argument value.sh
PASS: tests/expressions_constants.sh
PASS: tests/expressions variables.sh
PASS: tests/expressions functions.sh
PASS: tests/exp.sh
PASS: tests/i-beam-euler-bernoulli.sh
PASS: tests/iaea-pwr.sh
PASS: tests/iterative.sh
PASS: tests/fit.sh
PASS: tests/function algebraic.sh
PASS: tests/function_data.sh
PASS: tests/function file.sh
PASS: tests/function vectors.sh
PASS: tests/integral.sh
PASS: tests/laplace2d.sh
PASS: tests/materials.sh
PASS: tests/mesh.sh

126

PASS: tests/moment-of-inertia.sh

PASS: tests/nafems-lel.sh

FAIL: tests/nafems-1el0.sh

FAIL: tests/nafems-lell.sh

PASS: tests/nafems-tl-4.sh

PASS: tests/nafems-t2-3.sh

PASS: tests/neutron diffusion src.sh

PASS: tests/neutron_diffusion_keff.sh

FAIL: tests/parallelepiped.sh

PASS: tests/point-kinetics.sh

PASS: tests/print.sh

PASS: tests/thermal-1d.sh

PASS: tests/thermal-2d.sh

PASS: tests/trig.sh

PASS: tests/two-cubes-isotropic.sh

PASS: tests/two-cubes-orthotropic.sh

PASS: tests/vector.sh

XFAIL: tests/xfail-few-properties-ortho-young.sh
XFAIL: tests/xfail-few-properties-ortho-poisson.sh
XFAIL: tests/xfail-few-properties-ortho-shear.sh

Testsuite summary for feenox v0.2.6-g3237ce9

TOTAL: 43
PASS: 35
SKIP:
XFAIL:
FAIL:
XPASS:
ERROR:

See ./test-suite.log
Please report to jeremy@seamplex.com

: kxk [Makefile:1152: test-suite.log] Error 1

: Leaving directory '/home/gtheler/codigos/feenox'
1 *xxx [Makefile:1260: check-TESTS] Error 2

: Leaving directory '/home/gtheler/codigos/feenox'
: *xx [Makefile:1791: check-am] Error 2

: Leaving directory '/home/gtheler/codigos/feenox"
** [Makefile:1037: check-recursive] Error 1

D.5.7 Installation

To be able to execute FeenoX from any directory, the binary has to be copied to a directory available in the
PATH environment variable. If you have root access, the easiest and cleanest way of doing this is by calling
make install with sudo or su:

|
$ sudo make install

Making install in src
make[1]: Entering directory '/home/gtheler/codigos/feenox/src'
gmake[2]: Entering directory '/home/gtheler/codigos/feenox/src'
/usr/bin/mkdir -p '/usr/local/bin'

/usr/bin/install -c feenox '/usr/local/bin'
gmake[2]: Nothing to be done for 'install-data-am'.
gmake[2]: Leaving directory '/home/gtheler/codigos/feenox/src'

make[1l]: Leaving directory '/home/gtheler/codigos/feenox/src'
make[1]: Entering directory '/home/gtheler/codigos/feenox"

cp -r src/feenox .

make[2]: Entering directory '/home/gtheler/codigos/feenox'
make[2]: Nothing to be done for 'install-exec-am'.

make[2]: Nothing to be done for 'install-data-am'.
make[2]: Leaving directory '/home/gtheler/codigos/feenox'
make[1]: Leaving directory '/home/gtheler/codigos/feenox'
$

If you do not have root access or do not want to populate /usr/local/bin, you can either
« Configure with a different prefix (not covered here), or

« Copy (or symlink) the feenox executable to $HOME/bin:

|
mkdir -p ${HOME}/bin

cp feenox ${HOME}/bin

If you plan to regularly update FeenoX (which you should), you might want to symlink instead of
copy so you do not need to update the binary in sHoME/bin each time you recompile:

|
mkdir -p ${HOME}/bin

1n -sf feenox ${HOME}/bin

Check that FeenoX is now available from any directory (note the command is feenox and not ./feenox):

|
$ cd

$ feenox -v
FeenoX v0.2.14-gbbf48c9
a free no-fee no-X uniX-like finite-element(ish) computational engineering tool

Copyright © 2009--2022 https://seamplex.com/feenox

GNU General Public License v3+, https://www.gnu.org/licenses/gpl.html.
FeenoX is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.

$

If it is not and you went through the sHome/bin path, make sure it is in the PATH (pun). Add

export PATH=${PATH}:${HOME}/bin

to your .bashrc in your home directory and re-login.

D.6 Advanced settings

D.6.1 Compiling with debug symbols
By default the C flags are -03, without debugging. To add the -g flag, just use cFLAGS when configuring:

./configure CFLAGS="-g -00"

128

D.6.2 Using a different compiler

FeenoX uses the cc environment variable to set the compiler. So configure like

|
export CC=clang; ./configure

Note that the cc variable has to be exported and not passed to configure. That is to say, don’t configure like

| |
./configure CC=clang
| \

Mind also the following environment variables when using MPI-enabled PETSc:

e MPICH CC
¢ OMPI CC
e I MPI CC

Depending on how your system is configured, this last command might show ctlang but not actually use
it. The FeenoX executable will show the configured compiler and flags when invoked with the --versions
option:
| $ feenox --versions

FeenoX v0.2.14-gbbf48c9

a free no-fee no-X uniX-like finite-element(ish) computational engineering tool

Last commit date : Sat Feb 12 15:35:05 2022 -0300

Build date : Sat Feb 12 15:35:44 2022 -0300

Build architecture : linux-gnu x86 64

Compiler version : gcc (Debian 10.2.1-6) 10.2.1 20210110

Compiler expansion : gcc -Wl,-z,relro -I/usr/include/x86 64-linux-gnu/mpich -L/usr/1ib/x86 64-linux-gnu <=
-lmpich

Compiler flags : -03

Builder : gtheler@tom

GSL version 1 2.6

SUNDIALS version : 5.7.0

PETSc version : Petsc Release Version 3.16.3, Jan 05, 2022

PETSc arch : arch-linux-c-debug

PETSc options : --download-eigen --download-hdf5 --download-hypre --download-metis --download-mumps <—

--download- parmetls --download-pragmatic --download-scalapack
SLEPc version : SLEPc Release Version 3.16.1, Nov 17, 2021
$

You can check which compiler was actually used by analyzing the feenox binary as

|
$ objdump -s --section .comment ./feenox

./feenox: file format elf64-x86-64

Contents of section .comment:

0000 4743433a 20284465 6269616e 2031322e GCC: (Debian 12.
0010 322e302d 31342920 31322e32 2e300044 2.0-14) 12.2.0.D
0020 65626961 6e20636¢C 616€6720 76657273 ebian clang vers
0030 6967620 31342e30 2e3600 ion 14.0.6.

$

It should be noted that the MPI implementation used to compile FeenoX has to match the one used to
compile PETSc. Therefore, if you compiled PETSc on your own, it is up to you to ensure MPI compatibility.

129

If you are using PETSc as provided by your distribution’s repositories, you will have to find out which one
was used (it is usually OpenMPI) and use the same one when compiling FeenoX. FeenoX has been tested
using PETSc compiled with

« MPICH
+ OpenMPI
« Intel MPI

D.6.3 Compiling PETSc

Particular explanation for FeenoX is to be done. For now, follow the general explanation from PETSc’s
website.

| export PETSC DIR=$PWD
export PETSC ARCH=arch-linux-c-opt
./configure --with-debugging=0 --download-mumps --download-scalapack --with-cxx=0 --COPTFLAGS=-03 -- <>
FOPTFLAGS=-03

export PETSC_DIR=$PWD
./configure --with-debugging=0 --with-openmp=0 --with-x=0 --with-cxx=0 --COPTFLAGS=-03 --FOPTFLAGS=-03
make PETSC DIR=/home/ubuntu/reflex-deps/petsc-3.17.2 PETSC ARCH=arch-linux-c-opt all

130

https://petsc.org/release/install/
https://petsc.org/release/install/

Appendix E

Appendix: Inputs for solving LE10 with
other FEA programs

This appendix illustrates the differences in the input file formats used by FeenoX and the ones used by
other open source finite-element solvers. The problem being solved is the NAFEMS LE10 benchmark, first
discussed in sec. 1.2:

NAFEMS Benchmark LE-10: thick plate pressure
PROBLEM mechanical DIMENSIONS 3
READ_MESH nafems-lel@.msh # mesh in millimeters

LOADING: uniform normal pressure on the upper surface
BC upper p=1 # 1 Mpa

BOUNDARY CONDITIONS:
BC DCD'C' v=0
BC ABA'B' u=0
BC BCB'C' u=0 v=0
BC midplane w=0

1

Face DCD'C' zero y-displacement
Face ABA'B' zero x-displacement
Face BCB'C' x and y displ. fixed
z displacements fixed along mid-plane

H W

#

MATERIAL PROPERTIES: isotropic single-material properties
E = 210e3 # Young modulus in MPa
nu = 0.3 # Poisson's ratio

SOLVE_PROBLEM # solve!

print the direct stress y at D (and nothing more)
PRINT "o y @ D = " sigmay(2000,0,300) "MPa"

See the following URL and its links for further details about solving this problem with the other codes:
https://cofea.readthedocs.io/en/latest/benchmarks/004-eliptic-membrane/tested-codes.html

E.1 CalculiX

Kk MeSh ++++ttttttttttttttttttt bttt bbbttt bbb bbb

*INCLUDE, INPUT=Mesh/fine-lin-hex.inp # Path to mesh for ccx solver

¥ Mesh ++++++++++t+ttttttttttttttt bttt

131

https://www.seamplex.com/feenox/examples/#nafems-le10-thick-plate-pressure-benchmark
https://cofea.readthedocs.io/en/latest/benchmarks/004-eliptic-membrane/tested-codes.html

*MATERIAL, NAME=Steel # Defining a material

*DENSITY

7800 # Defining a density

*ELASTIC,

2.1lell, 0.3 # Defining Young modulus and Poisson's ratio

*% SeCctions ++++++++tHtHHt bbbt

*SOLID SECTION, ELSET=ELIPSE, MATERIAL=Steel # Assigning material and plane stress elements
0.1, # to the elements sets in mesh and adding thickness

¥k Steps +ttttttttttttt bbbt bbb

*STEP # Begin of analysis
*STATIC, SOLVER=SPOOLES # Selection of elastic analysis

*% Field outputs ++++++++ttttttttttttttttttttttttttttttttt++

*EL FILE # Commands responsible for saving results
E, S

*NODE FILE

U

** Boundary conditions +++++++++tttttttbb bbb

*BOUNDARY, # Applying translation = 0 on desired nodes
AB,1,1,0

*BOUNDARY

CD,2,2,0

** Boundary conditions(adding pressure) +++++++++++tttt+++

*DLOAD
*INCLUDE, INPUT=Pressure/fine-lin-hex.dlo

*% End step +++ttttttttttttt bbbttt bbb

*END STEP # End on analysis

E.2 Code Aster

mesh = LIRE_MAILLAGE(identifier='0:1", # Reading a mesh
FORMAT="IDEAS',
UNITE=80)

model

AFFE_MODELE(identifier='1:1", # Assignig plane stress
AFFE=_ F(MODELISATION=('C PLAN',), # elements to mesh
PHENOMENE="'MECANIQUE',
TOUT='0UI'),
MAILLAGE=mesh)

mater = DEFI_MATERIAU(identifier='2:1", # Defining elastic material
ELAS= F(E=210000000000.0,
NU=0.3))
materfl = AFFE_MATERIAU(identifier='3:1"', # Assigning material to model

132

AFFE=_F(MATER=(mater,),
TOUT="'0UI"),
MODELE=model)

mecabc

AFFE_CHAR MECA(identifier='4:1"'
DDL IMPO=(F(DX=0.0,
GROUP_MA=('AB',)),
_F(DY=0.0,
GROUP_MA=('CD',))),
MODELE=model)

mecach = AFFE_CHAR MECA(identifier='5:1",
MODELE=model,
PRES_REP=_F(GROUP_MA=('BC',),
PRES=-10000000.0))

result = MECA STATIQUE(identifier='6:1"',
CHAM_MATER=materfl,
EXCIT=(_F(CHARGE=mecabc),
_F(CHARGE=mecach)),
MODELE=model)

SYY = CALC_CHAMP(identifier='7:1",
CHAM_MATER=materfl,
CONTRAINTE=('SIGM NOEU',6),
MODELE=model,
RESULTAT=result)

IMPR_RESU(identifier='8:1",
FORMAT="'MED "',
RESU=(_F(RESULTAT=result),

_F(RESULTAT=SYY)),
UNITE=80)

FIN()

Applying boundary conditions
displacement = 0
to the selected group of elements

Applying pressure to the
group of elements

Defining the results of
simulation

Calculating stresses in
computed domain

Saving the results

E.3 Elmer

Header
CHECK KEYWORDS Warn
Mesh DB "." "."
Include Path ""
Results Directory ""
End

Simulation
Max Output Level = 5
Coordinate System = Cartesian
Coordinate Mapping(3) =12 3
Simulation Type = Steady state
Steady State Max Iterations =1
Output Intervals =1
Timestepping Method = BDF
BDF Order =1
Solver Input File = case.sif
Post File = case.vtu

133

Path to the mesh

Path to results directory

Settings and constants for simulation

End

Constants
Gravity(4) = 0 -1 0 9.82
Stefan Boltzmann = 5.67e-08
Permittivity of Vacuum = 8.8542e-12
Boltzmann Constant = 1.3807e-23
Unit Charge = 1.602e-19

End

Body 1
Target Bodies(1l) = 10
Name = "Body Property 1"

Equation = 1
Material =1
End
Solver 2
Equation = Linear elasticity
Procedure = "StressSolve" "StressSolver"

Calculate Stresses = True

Variable = -dofs 2 Displacement
Exec Solver = Always

Stabilize = True

Bubbles = False

Lumped Mass Matrix = False
Optimize Bandwidth = True

Steady State Convergence Tolerance = 1.0e-5
Nonlinear System Convergence Tolerance = 1.
Nonlinear System Max Iterations 20
Nonlinear System Newton After Iterations
Nonlinear System Newton After Tolerance
Nonlinear System Relaxation Factor 1
Linear System Solver = Direct
Linear System Direct Method = Umfpack
End

1

Solver 1
Equation = SaveScalars
Save Points = 26
Procedure = "SaveData" "SaveScalars"
Filename = file.dat
Exec Solver = After Simulation
End
Equation 1
Name = "STRESS"

Calculate Stresses = True

Plane Stress = True

Active Solvers(1)
End

Equation 2
Name = "DATA"
Active Solvers(1)
End

Material 1

Assigning the material and equations to the mesh

Solver settings

Oe-7

3
.0e-3

Saving the results from node at point D

Setting active solvers

Turning on plane stress simulation

Defining the material

134

Name = "STEEL"

Poisson ratio = 0.3

Porosity Model = Always saturated
Youngs modulus = 2.1lell

End

Boundary Condition 1 # Applying the boundary conditions
Target Boundaries(1l) = 12
Name = "AB"
Displacement 1 = 0

End

Boundary Condition 2
Target Boundaries(1l) = 13
Name = "CD"
Displacement 2 = 0

End

Boundary Condition 3
Target Boundaries(1l) = 14
Name = "BC"
Normal Force = 10e6

End

135

Appendix A

Appendix: Downloading and compiling
FeenoX

A.1 Binary executables

Browse to https://www.seamplex.com/feenox/dist/ and check what the latest version for your architecture
is. Then do

feenox version=1.1

wget -c https://www.seamplex.com/feenox/dist/linux/feenox-v${feenox version}-linux-amd64.tar.gz

tar xzf feenox-v${feenox version}-linux-amd64.tar.gz
sudo cp feenox-v${feenox version}-linux-amd64/bin/feenox /usr/local/bin

You’ll have the binary under bin and examples, documentation, manpage, etc under share. Copy bin/ +
feenox into somewhere in the PaTH and that will be it. If you are root, do

sudo cp feenox-v${feenox version}-linux-amd64/bin/feenox /usr/local/bin

If you are not root, the usual way is to create a directory $HoME/bin and add it to your local path. If you have
not done it already, do

mkdir -p $HOME/bin
echo 'expot PATH=$PATH:$HOME/bin' >> .bashrc

Then finally copy bin/feenox to $HOME/bin

cp feenox-v${feenox version}-linux-amd64/bin/feenox $HOME/bin

Check if it works by calling feenox from any directory (you might need to open a new terminal so .bashrc
is re-read):
|
$ feenox
FeenoX v1.1-994ddf72
a cloud-first free no-fee no-X uniX-like finite-element(ish) computational engineering tool

usage: feenox [options] inputfile [replacement arguments] [petsc options]

136

https://www.seamplex.com/feenox/dist/

-h, --help display options and detailed explanations of command-line usage

-v, --version display brief version information and exit

-V, --versions display detailed version information

-c, --check validates if the input file is sane or not

- -pdes list the types of PROBLEMs that FeenoX can solve, one per line
--elements info output a document with information about the supported element types

--ast dump an abstract syntax tree of the input
--linear force FeenoX to solve the PDE problem as linear
--non-linear force FeenoX to solve the PDE problem as non-linear

Run with --help for further explanations.
$

A.2 Source tarballs

To compile the source tarball, proceed as follows. This procedure does not need git nor autoconf but a new
tarball has to be downloaded each time there is a new FeenoX version.

1. Install mandatory dependencies

|
sudo apt-get update

sudo apt-get install gcc make libgsl-dev

If you cannot install libgst-dev, you can have the configure script to download and compile it for you.
See point 4 below.

2. Install optional dependencies (of course these are optional but recommended)
|

sudo apt-get install libsundials-dev petsc-dev slepc-dev

3. Download and un-compress FeenoX source tarball. Browse to https://www.seamplex.com/feenox/
dist/src/ and pick the latest version:

|
wget https://www.seamplex.com/feenox/dist/src/feenox-vl.1l.tar.gz

tar xvzf feenox-vl.l.tar.gz

4. Configure, compile & make

|
cd feenox-vl.1

./configure
make -j4

If you cannot (or do not want) to use libgsl-dev from a package repository, call configure with -- +
enable-download-gsl:

|
./configure --enable-download-gsl

If you do not have Internet access, get the tarball manually, copy it to the same directory as
configure and run again.

5. Run test suite (optional)

137

https://www.seamplex.com/feenox/dist/src/
https://www.seamplex.com/feenox/dist/src/

make check

6. Install the binary system wide (optional)

sudo make install

A.3 Git repository

The Git repository has the latest sources repository. To compile, proceed as follows. If something goes
wrong and you get an error, do not hesitate to ask in FeenoX’s discussion page.

If you do not have Git or Autotools, download a source tarball and proceed with the usual
configure & make procedure. See these instructions.

1. Install mandatory dependencies

|
sudo apt-get update

sudo apt-get install git build-essential make automake autoconf libgsl-dev

If you cannot install 1ibgsi-dev but still have git and the build toolchain, you can have the configure
script to download and compile it for you. See point 4 below.

2. Install optional dependencies (of course these are optional but recommended)

sudo apt-get install libsundials-dev petsc-dev slepc-dev

3. Clone Github repository

git clone https://github.com/seamplex/feenox

4. Bootstrap, configure, compile & make

|
cd feenox

./autogen.sh

./configure
make -j4

If you cannot (or do not want to) use libgsl-dev from a package repository, call configure with -- «+

enable-download-gsl:

./configure --enable-download-gsl
|

If you do not have Internet access, get the tarball manually, copy it to the same directory as
configure and run again. See the detailed compilation instructions for an explanation.

5. Run test suite (optional)

make check

6. Install the binary system wide (optional)

138

https://github.com/seamplex/feenox/discussions
https://seamplex.com/feenox/dist/src/
doc/source.md
compilation.md

| |
sudo make install

If you do not have root permissions, configure with your home directory as prefix and
then make install as a regular user:

|
./configure --prefix=$HOME

make
make install

To stay up to date, pull and then autogen, configure and make (and optionally install):

|
git pull

./autogen.sh

./configure
make -j4
sudo make install

139

Appendix B

Appendix: Rules of Unix philosophy

In 1978, Doug Mcllroy—the inventor of Unix pipes and one of the founders of the Unix tradition—stated:

i. Make each program do one thing well. To do a new job, build afresh rather than complicate old
programs by adding new features.

ii. Expectthe output of every program to become the input to another, as yet unknown, program. Don’t
clutter output with extraneous information. Avoid stringently columnar or binary input formats.
Don’t insist on interactive input.

iii. Design and build software, even operating systems, to be tried early, ideally within weeks. Don’t
hesitate to throw away the clumsy parts and rebuild them.

iv. Use tools in preference to unskilled help to lighten a programming task, even if you have to detour
to build the tools and expect to throw some of them out after you’ve finished using them.

He later summarized it this way:

This is the Unix philosophy: Write programs that do one thing and do it well. Write programs
to work together. Write programs to handle text streams, because that is a universal interface.

FeenoX explicitly followed the above ideas from scratch, especially the for sentences in bullet ii. It is
even, like Unix itself, a third-system effect where clumsy parts of previous attempts were thrown away
and rebuilt from scratch. The following sections explain how each of the seventeen rules was taken into
account when designing and implementing FeenoX.

B.1 Rule of Modularity

Developers should build a program out of simple parts connected by well defined interfaces, so
problems are local, and parts of the program can be replaced in future versions to support new
features. This rule aims to save time on debugging code that is complex, long, and unreadable.

FeenoX is designed to be as lightweight as possible. On the one hand, it relies on third-party high-quality
libraries to do the heavy mathematical weightlifting such as

« GNU Scientific Library for general mathematics,
« SUNDIALS IDA for ODEs and DAEs,
« PETSc for linear, non-linear and transient PDEs, and

140

https://www.gnu.org/software/gsl/
https://computing.llnl.gov/projects/sundials/ida
https://petsc.org/

« SLEPc for PDEs involving eigen problems

because these libraries were written by professional programmers using algorithms designed by profes-
sional mathematicians. Yet-to-be-discovered improved mathematical schemes and/or coding algorithms
can be eventually used by FeenoX by just updating those dependencies, which for sure will keep their
well-defined interfaces (because they are programmed by professional programmers).

Moreover, the extensibility feature (sec. B.17) of having each PDE in separate directories which can be
added or removed at compile time without changing any line of the source code goes into this direction
as well. Relying of C function pointers allows (in principle) to replace these “virtual” methods with other
ones using the same interface.

Note that our (human) languages in general and words in particular shape and limit the way
we think. Fortran’s concept of “modules” is not the same as Unix’s concept of “modularity.” I
wish two different words had been used.

B.2 Rule of Clarity

Developers should write programs as if the most important communication is to the developer
who will read and maintain the program, rather than the computer. This rule aims to make
code as readable and comprehensible as possible for whoever works on the code in the future.

Of course there might be a confirmation bias in this section because every programmer thinks their code
is clear (and everybody else’s is not). But the first design decision to fulfill this rule is the programming
language: there is little change to fulfill it with Fortran. One might argue that C++ can be clearer than C
in some points, but for the vast majority of the source code they are equally clear. Besides, C is far simpler
than C++ (see rule of simplicity).

The second decision is not about the FeenoX source code but about FeenoX inputs: clear human-readable
input files without any extra unneeded computer-level nonsense. The two illustrative cases are the
NAFEMS LE10 & LE11 benchmarks, where there is a clear one-to-one correspondence between the
“engineering” formulation and the input file FeenoX understands.

B.3 Rule of Composition

Developers should write programs that can communicate easily with other programs. This
rule aims to allow developers to break down projects into small, simple programs rather than
overly complex monolithic programs.

Previous designs of FeenoX’ predecessors used to include instructions to perform parametric sweeps(and
even optimization loops), non-trivial macro expansions using M4 and even execution of arbitrary shell
commands. These non-trivial operations were removed from FeenoX to focus on the rule of composition,
paying especially attention to easing the inclusion of calling the feenox binary from shell scripts, enforc-
ing the composition with other Unix-like tools. Emphasis has been put on adding flexibility to program-
matic generation of input files (see also rule of generation in sec. B.14) and the handling and expansion of
command-line arguments to increase the composition with other programs.

Moreover, the output is 100% controlled by the user at run-time so it can be tailored to suit any other
programs’ input needs as well. An illustrative example is creating professional-looking tables with results
using AWK & LaTeX.

141

http://slepc.upv.es/
https://www.seamplex.com/feenox/examples/mechanical.html#nafems-le10-thick-plate-pressure-benchmark
https://www.seamplex.com/feenox/examples/mechanical.html#nafems-le11-solid-cylindertapersphere-temperature-benchmark
https://www.seamplex.com/feenox/doc/sds.html#sec:interoperability
https://www.seamplex.com/feenox/doc/sds.html#sec:interoperability

B.4 Rule of Separation

Developers should separate the mechanisms of the programs from the policies of the programs;
one method is to divide a program into a front-end interface and a back-end engine with which
that interface communicates. This rule aims to prevent bug introduction by allowing policies
to be changed with minimum likelihood of destabilizing operational mechanisms.

FeenoX relies of the rule of separation (which also links to the next two rules of simplicity and parsimony)
from the very beginning of'its design phase. It was explicitly designed as a glue layer between a mesher like
Gmsh and a post-processor like Gnuplot, Gmsh or Paraview. This way, not only flexibility and diversity (see
#sec:unix-diversity) can be boosted, but also technological changes can be embraced with little or no effort.
For example, CAEplex provides a web-based platform for performing thermo-mechanical analysis on the
cloud running from the browser. Had FeenoX been designed as a traditional desktop-GUI program, this
would have been impossible. If in the future CAD/CAE interfaces migrate into virtual and/or augmented
reality with interactive 3D holographic input/output devices, the development effort needed to use FeenoX

as the back end is negligible.

B.5 Rule of Simplicity

Developers should design for simplicity by looking for ways to break up program systems into
small, straightforward cooperating pieces. This rule aims to discourage developers’ affection
for writing “intricate and beautiful complexities” that are in reality bug prone programs.

The main source of simplicity comes from the design of the syntax of the input files, discussed in detail in
the SDS:

« English-like self-evident input files matching as close as possible the problem text.
« Simple problems need simple input.

« Similar problems need similar inputs.

« If there is a single material there is no need to link volumes to properties.

B.6 Rule of Parsimony

Developers should avoid writing big programs. This rule aims to prevent overinvestment of
development time in failed or suboptimal approaches caused by the owners of the program’s
reluctance to throw away visibly large pieces of work. Smaller programs are not only easier
to write, optimize, and maintain; they are easier to delete when deprecated.

We already said that FeenoX is a glue layer between a mesher and a post-processing tool. Even more, at
another level, it acts as two glue layers between the mesher and PETSc, and PETSc and the post-processor.

On the other hand, we also already stated that FeenoX was written from scratch after throwing away
clumsy code from two previous attempts. For instance, these previous versions used to implement para-
metric and optimization schemes. Instead, in FeenoX, these type of runs have to be driven from an outer
script (Bash, Python, etc.)

142

https://www.caeplex.com
https://www.seamplex.com/feenox/doc/sds.html#sec:input

B.7 Rule of Transparency

Developers should design for visibility and discoverability by writing in a way that their
thought process can lucidly be seen by future developers working on the project and using
input and output formats that make it easy to identify valid input and correct output. This
rule aims to reduce debugging time and extend the lifespan of programs.

As with the rule of clarity (sec. B.2), there is a risk of falling into the confirmation bias because every
programmer thinks its code is transparent. Anyway, FeenoX is written in C99 which is way easier to
debug than both Fortran and C++. Yet, very much like PETSc, FeenoX makes use of structures and func-
tion pointers to give the same functionality as C++’s virtual methods without needing to introduce other
complexities that make the code base harder to maintain and to debug.

Regarding identification of valid inputs and correct outputs,

1. The build system includes a make check target that runs hundreds of regressions tests.
2. The code supports verification using the Method of Manufactured Solutions

B.8 Rule of Robustness

Developers should design robust programs by designing for transparency and discoverability,
because code that is easy to understand is easier to stress test for unexpected conditions that
may not be foreseeable in complex programs. This rule aims to help developers build robust,
reliable products.

Robustness is the child of transparency and simplicity.

B.9 Rule of Representation

Developers should choose to make data more complicated rather than the procedural logic
of the program when faced with the choice, because it is easier for humans to understand
complex data compared with complex logic. This rule aims to make programs more readable
for any developer working on the project, which allows the program to be maintained.

There is a trade off between clarity and efficiency. However, avoiding Fortran should already fulfill this
rule. FeenoX uses C structures with function pointers, which make it far simple to understand than similar
Fortran-based FEM tools. Just compare the source directories of FeenoX and CalculiX. Take for instance
the file stress.c from src/pdes/mechanical (which if deleted, will remove support for mechanical problems but
it will not prevent the compilation of feenox) from the former and calcstress.f (buried inside 2,400 files
in src) from the latter. There might be more illustrative examples showing how FeenoX’ design is more
representative than of CalculiX, but it is way too hard to understand the source code of the latter (even
though the license is supposed to be GPL).

B.10 Rule of Least Surprise

Developers should design programs that build on top of the potential users’ expected knowl-
edge; for example, ‘+’ in a calculator program should always mean ‘addition’. This rule aims
to encourage developers to build intuitive products that are easy to use.

The rules of input syntax have been designed with this rule in mind. Just note a couple of them:

143

https://github.com/seamplex/feenox/tree/main/tests
https://github.com/seamplex/feenox/tree/main/tests/mms
https://github.com/seamplex/feenox/blob/main/src/pdes/mechanical/stress.c
https://github.com/seamplex/feenox/blob/main/src/pdes/mechanical/stress.c
https://github.com/calculix/ccx_prool/blob/master/CalculiX/ccx_2.21/src/calcstress.f
https://github.com/calculix/ccx_prool/tree/master/CalculiX/ccx_2.21/src

+ The command-line arguments after the input file are available to be expanded verbatim in the input
file as 31, $2, etc. (or ${13, ${2}, etc. if they appear in the middle of strings). This syntax matches Bash’
syntax for expanding command-line arguments, so any person reading an input file with this syntax
already knows what it does. ’

« If one needs a problem where the conductivity depends on x as k(z) = 1 + « then the input is

’k(x) = 1+x ‘

« If a problem needs a temperature distribution given by an algebraic expression T'(z,y,z) =
V&% + y? + z then do

’T(X,y,z) = sqrt(x"2+y™2) + z ‘

+ This syntax for (basic) algebraic expressions matches the common syntax found in Gmsh, Maxima
and many other scientific tools. More complex expressions (e.g. involving hyperbolic tangents)
might differ slightly.

B.11 Rule of Silence

Developers should design programs so that they do not print unnecessary output. This rule
aims to allow other programs and developers to pick out the information they need from a
program’s output without having to parse verbosity.

TL;DR: no PRINT (Or WRITE_RESULTS), no output.

B.12 Rule of Repair

Developers should design programs that fail in a manner that is easy to localize and diagnose
or in other words “fail noisily”. This rule aims to prevent incorrect output from a program
from becoming an input and corrupting the output of other code undetected.

Input errors are detected before the computation is started:

|
$ feenox thermal-error.fee

error: undefined thermal conductivity 'k'
$

Run-time errors (even inside the numerical libraries) are caught with custom handlers.

B.13 Rule of Economy

Developers should value developer time over machine time, because machine cycles today are
relatively inexpensive compared to prices in the 1970s. This rule aims to reduce development
costs of projects.

As explained in the SDS, output is 100% user-defined so only the desired results are directly obtained instead
of needing further digging into tons of undesired data. The approach of “compute and write everything
you can in one single run” made sense in 1970 where CPU time was more expensive than human time, but
not anymore. Once again, the iconic examples are the NAFEMS LE10 & LE11 benchmarks, where just the
required scalar stress at the required location is written into the standard output.

144

https://www.seamplex.com/feenox/doc/sds.html#sec:output
https://www.seamplex.com/feenox/examples/mechanical.html#nafems-le10-thick-plate-pressure-benchmark
https://www.seamplex.com/feenox/examples/mechanical.html#nafems-le11-solid-cylindertapersphere-temperature-benchmark

B.14 Rule of Generation

Developers should avoid writing code by hand and instead write abstract high-level programs
that generate code. This rule aims to reduce human errors and save time.

Some key points:

« Input files are M4-like-macro friendly.
« Parametric runs can be done from scripts through expansion of command line arguments.
« Documentation is created out of simple Markdown sources and assembled as needed.

More saliently, the automatic detection of the available PDEs in src/pdes is an example of this rule. The
autogen.sh would loop over each subdirectory and create a source file src/pdes/parser.c with a function
feenox_pde_parse_problem_type() which then will be part of the actual FeenoX source base as the entry point
for parsing the proBLEM keyword.

B.15 Rule of Optimization

Developers should prototype software before polishing it. This rule aims to prevent developers
from spending too much time for marginal gains.

FeenoX is still “premature” for heavy optimization. Yet, it is (relatively) faster than other alternatives. It
does use link-time optimization to allow for inlining of small routines. There is even a FeenoX benchmark-
ing repository that uses Google’s Benchmark library to prototype code optimization: https://github.com
/seamplex/feenox-benchmark.

B.16 Rule of Diversity

Developers should design their programs to be flexible and open. This rule aims to make pro-
grams flexible, allowing them to be used in ways other than those their developers intended.

FeenoX can read Gmsh files, but they need not necessarily be created by Gmsh. Other meshing formats
(VTK with group names?) are planned to be implemented. Also, either Gmsh or Paraview can be used to
post-process results. But also other formats are planned. See sec. B.17. Diversity is embraced from the
bottom up!

B.17 Rule of Extensibility

Developers should design for the future by making their protocols extensible, allowing for
easy plugins without modification to the program’s architecture by other developers, noting
the version of the program, and more. This rule aims to extend the lifespan and enhance the
utility of the code the developer writes.

The main extensibility feature is that each PDE has a separate source directory. Any of them can be used
as as template to add new PDEs, which are detected at compile time by the Autotools bootstrapping script.

A final note is that FeenoX is GPLv3+. First, this means that extensions and contributions are welcome.
Each author retains the copyright on the contributed code (as long as it is free software). Second, the + is
there for the future.

145

https://github.com/seamplex/feenox-benchmark
https://github.com/seamplex/feenox-benchmark

Appendix C

Appendix: FeenoX history

Very much like Unix in the late 1960s and C in the early 1970s, FeenoX is a third-system effect: I wrote
a first hack that seemed to work better than I had expected. Then I tried to add a lot of features and
complexities which I felt the code needed. After ten years of actual usage, I then realized

1. what was worth keeping,
2. what needed to be rewritten and
3. what had to be discarded.

The first version was called wasora, the second was “The wasora suite” (i.e. a generic framework plus a
bunch of “plugins”, including a thermo-mechanical one named Fino) and then finally FeenoX. The story
that follows explains why I wrote the first hack to begin with.

It was at the movies when I first heard about dynamical systems, non-linear equations and chaos theory.
The year was 1993, I was ten years old and the movie was Jurassic Park. Dr. Ian Malcolm (the character
portrayed by Jeff Goldblum) explained sensitivity to initial conditions in a memorable scene, which is
worth watching again and again. Since then, the fact that tiny variations may lead to unexpected results
has always fascinated me. During high school I attended a very interesting course on fractals and chaos
that made me think further about complexity and its mathematical description. Nevertheless, it was not
not until college that I was able to really model and solve the differential equations that give rise to chaotic
behavior.

In fact, initial-value ordinary differential equations arise in a great variety of subjects in science and engi-
neering. Classical mechanics, chemical kinetics, structural dynamics, heat transfer analysis and dynamical
systems, among other disciplines, heavily rely on equations of the form

x = F(x,1)

During my years of undergraduate student (circa 2004-2007), whenever I had to solve these kind of equa-
tions I had to choose one of the following three options:

1. to program an ad-hoc numerical method such as Euler or Runge-Kutta, matching the requirements
of the system of equations to solve, or

146

https://www.seamplex.com/feenox
https://en.wikipedia.org/wiki/Ian_Malcolm_(character)
https://en.wikipedia.org/wiki/Jeff_Goldblum
https://www.youtube.com/watch?v=n-mpifTiPV4
https://en.wikipedia.org/wiki/Euler_method
https://en.wikipedia.org/wiki/Runge%E2%80%93Kutta_methods

Figure C.1: Dr. Ian Malcolm (Jeff Goldblum) explains sensitivity to initial conditions.

2. to use a standard numerical library such as the GNU Scientific Library and code the equations to
solve into a C program (or maybe in Python), or

3. to use a high-level system such as Octave, Maxima, or some non-free (and worse, see below) pro-
grams.

Of course, each option had its pros and its cons. But none provided the combination of advantages I was
looking for, namely flexibility (option one), efficiency (option two) and reduced input work (partially given
by option three). Back in those days I ended up wandering between options one and two, depending on
the type of problem I had to solve. However, even though one can, with some effort, make the code read
some parameters from a text file, any other drastic change usually requires a modification in the source
code—some times involving a substantial amount of work—and a further recompilation of the code. This
was what I most disliked about this way of working, but I could nevertheless live with it.

Regardless of this situation, during my last year of Nuclear Engineering, the tipping point came along.
Here’s a slightly-fictionalized of a dialog between myself and the teacher at the computer lab (Dr E.), as it
might have happened (or not):

— (Prof.) Open MATLAB.™

— (Me) It’s not installed here. I type mathtlab and it does not work.

— (Prof) It’s spelled mattab.

— (Me) Ok, working. (A screen with blocks and lines connecting them appears)
— (Me) What’s this?

— (Prof.) The point reactor equations.

— (Me) It’s not. These are the point reactor equations:

N
OB LRI Sp A
=1

C'l'(t) = % . ¢(t) —)\i - C;

— (Me) And in any case, I'd write them like this in a computer:

‘ phi dot = (rho-Beta)/Lambda * phi + sum(lambda[i], c[i], i, 1, N)

147

https://en.wikipedia.org/wiki/Ian_Malcolm_(character)
https://en.wikipedia.org/wiki/Jeff_Goldblum
https://www.gnu.org/software/gsl/
https://www.gnu.org/software/octave/index
https://maxima.sourceforge.io/

c dot[i] = beta[i]/Lambda * phi - lambda[i]*c[i] ‘

This conversation forced me to re-think the ODE-solving issue. I could not (and still cannot) understand
why somebody would prefer to solve a very simple set of differential equations by drawing blocks and
connecting them with a mouse with no mathematical sense whatsoever. Fast forward fifteen years, and
what I wrote above is essentially how one would solve the point kinetics equations with FeenoX.

148

Appendix D

Appendix: Downloading & compiling

Please note that FeenoX is a cloud-first back end aimed at advanced users. It does not include
a graphical interface and it is not expected to run in Windows. See this 5-min explanation
about why:

For an easy-to-use web-based front end with FeenoX running in the cloud directly from your
browser see either * CAEplex * SunCAE

Any contribution to make desktop GUIs such as PrePoMax or FreeCAD to work with FeenoX
are welcome.

D.1 Debian/Ubuntu install

sudo apt install feenox

See these links for details about the packages:

+ https://packages.debian.org/unstable/science/feenox
« https://launchpad.net/ubuntu/+source/feenox

D.2 Downloads

Debian package https://packages.debian.org/unstable/science/feenox
Ubuntu package https://launchpad.net/ubuntu/+source/feenox
GNU/Linux binaries https://www.seamplex.com/feenox/dist/linux
Source tarballs https://www.seamplex.com/feenox/dist/src

Github repository https://github.com/seamplex/feenox/

Generic GNU/Linux binaries are provided as statically-linked executables for convenience. They do not
support MUMPS nor MPI and have only basic optimization flags. Please compile from source for high-end
applications. See detailed compilation instructions.

149

https://en.wikipedia.org/wiki/Front_and_back_ends
https://www.caeplex.com
htts://www.seamplex.com/suncae
https://prepomax.fs.um.si/
http://https://www.freecadweb.org
https://packages.debian.org/unstable/science/feenox
https://launchpad.net/ubuntu/+source/feenox
https://packages.debian.org/unstable/science/feenox
https://launchpad.net/ubuntu/+source/feenox
https://www.seamplex.com/feenox/dist/linux
https://www.seamplex.com/feenox/dist/src
https://github.com/seamplex/feenox/
doc/compilation.md

Be aware that FeenoX does not have a GUIL Read the documentation, especially the descrip-
tion and the FAQs. Ask for help on the GitHub discussions page if you do now understand
what this means.

You can still use FeenoX through a web-based UI through SunCAE

D.2.1 Statically-linked binaries

Browse to https://www.seamplex.com/feenox/dist/ and check what the latest version for your architecture
is. Then do
|

feenox version=1.1
wget -c https://www.seamplex.com/feenox/dist/1linux/feenox-v${feenox version}-linux-amd64.tar.gz

tar xzf feenox-v${feenox version}-linux-amd64.tar.gz
sudo cp feenox-v${feenox version}-linux-amd64/bin/feenox /usr/local/bin

You’ll have the binary under bin and examples, documentation, manpage, etc under share. Copy bin/
feenox into somewhere in the paTH and that will be it. If you are root, do

|
sudo cp feenox-v${feenox version}-linux-amd64/bin/feenox /usr/local/bin

If you are not root, the usual way is to create a directory $HoMe/bin and add it to your local path. If you have
not done it already, do

|
mkdir -p $HOME/bin

echo 'expot PATH=$PATH:$HOME/bin' >> .bashrc

Then finally copy bin/feenox to $HOME/bin

cp feenox-v${feenox version}-linux-amd64/bin/feenox $HOME/bin

Check if it works by calling feenox from any directory (you might need to open a new terminal so .bashrc

is re-read):
|
$ feenox
FeenoX v1.1-994ddf72
a cloud-first free no-fee no-X uniX-like finite-element(ish) computational engineering tool

usage: feenox [options] inputfile [replacement arguments] [petsc options]

-h, --help display options and detailed explanations of command-line usage

-v, --version display brief version information and exit

-V, --versions display detailed version information

-c, --check validates if the input file is sane or not

- -pdes list the types of PROBLEMs that FeenoX can solve, one per line
--elements info output a document with information about the supported element types
--ast dump an abstract syntax tree of the input

--linear force FeenoX to solve the PDE problem as linear

--non-linear force FeenoX to solve the PDE problem as non-linear

Run with --help for further explanations.

$

150

https://seamplex.com/feenox/doc/
https://www.seamplex.com/feenox/doc/feenox-desc.html
https://www.seamplex.com/feenox/doc/feenox-desc.html
https://seamplex.com/feenox/doc/FAQ.html
https://github.com/seamplex/feenox/discussions
https://www.seamplex.com/suncae.
https://www.seamplex.com/feenox/dist/

D.2.2 Compile from source

To compile the source tarball, proceed as follows. This procedure does not need git nor autoconf but a new
tarball has to be downloaded each time there is a new FeenoX version.

1. Install mandatory dependencies

|
sudo apt-get update

sudo apt-get install gcc make libgsl-dev

If you cannot install libgsl-dev, you can have the configure script to download and compile it for you.
See point 4 below.

2. Install optional dependencies (of course these are optional but recommended)
|

sudo apt-get install libsundials-dev petsc-dev slepc-dev

3. Download and un-compress FeenoX source tarball. Browse to https://www.seamplex.com/feenox/
dist/src/ and pick the latest version:
|

wget https://www.seamplex.com/feenox/dist/src/feenox-vl.1l.tar.gz

tar xvzf feenox-vl.l.tar.gz
|

4. Configure, compile & make

|
cd feenox-vl.1

./configure
make -j4

If you cannot (or do not want) to use libgsl-dev from a package repository, call configure with -- +

enable-download-gsl:

./configure --enable-download-gsl

If you do not have Internet access, get the tarball manually, copy it to the same directory as
configure and run again.

5. Run test suite (optional)

make check

6. Install the binary system wide (optional)

|
sudo make install

D.2.3 Github repository

The Git repository has the latest sources repository. To compile, proceed as follows. If something goes
wrong and you get an error, do not hesitate to ask in FeenoX’s discussion page.

If you do not have Git or Autotools, download a source tarball and proceed with the usual
configure & make procedure. See these instructions.

151

https://www.seamplex.com/feenox/dist/src/
https://www.seamplex.com/feenox/dist/src/
https://github.com/seamplex/feenox/discussions
https://seamplex.com/feenox/dist/src/
doc/source.md

1. Install mandatory dependencies

|
sudo apt-get update

sudo apt-get install git build-essential make automake autoconf libgsl-dev

If you cannot install 1ibgsi-dev but still have git and the build toolchain, you can have the configure
script to download and compile it for you. See point 4 below.

2. Install optional dependencies (of course these are optional but recommended)
|

|
sudo apt-get install libsundials-dev petsc-dev slepc-dev

3. Clone Github repository

| |
git clone https://github.com/seamplex/feenox
| \

4. Bootstrap, configure, compile & make
|

cd feenox
./autogen.sh
./configure
make -j4

If you cannot (or do not want to) use libgsl-dev from a package repository, call configure with -- +

enable-download-gsl:
|

./configure --enable-download-gsl

If you do not have Internet access, get the tarball manually, copy it to the same directory as
configure and run again. See the detailed compilation instructions for an explanation.

5. Run test suite (optional)

| |
|IHHHHIIHHHHHIII
| \

6. Install the binary system wide (optional)

sudo make install

If you do not have root permissions, configure with your home directory as prefix and

then make install as a regular user:

|
./configure --prefix=$HOME

make
make install

To stay up to date, pull and then autogen, configure and make (and optionally install):

|
git pull
./autogen.sh

./configure
make -j4
sudo make install

See the Compilation Guide for details. Ask in the GitHub Discussions page for help.

152

compilation.md
doc/compile.md
https://github.com/seamplex/feenox/discussions

D.3 Licensing

FeenoX is distributed under the terms of the GNU General Public License version 3 or (at your option) any
later version. The following text was borrowed from the Gmsh documentation. Replacing “Gmsh” with
“FeenoX” gives:

FeenoX is “free software”; this means that everyone is free to use it and to redistribute it on a
free basis. FeenoX is not in the public domain; it is copyrighted and there are restrictions on its
distribution, but these restrictions are designed to permit everything that a good cooperating
citizen would want to do. What is not allowed is to try to prevent others from further sharing
any version of FeenoX that they might get from you.

Specifically, we want to make sure that you have the right to give away copies of FeenoX, that
you receive source code or else can get it if you want it, that you can change FeenoX or use
pieces of FeenoX in new free programs, and that you know you can do these things.

To make sure that everyone has such rights, we have to forbid you to deprive anyone else of
these rights. For example, if you distribute copies of FeenoX, you must give the recipients all
the rights that you have. You must make sure that they, too, receive or can get the source code.
And you must tell them their rights.

Also, for our own protection, we must make certain that everyone finds out that there is no
warranty for FeenoX. If FeenoX is modified by someone else and passed on, we want their
recipients to know that what they have is not what we distributed, so that any problems
introduced by others will not reflect on our reputation.

The precise conditions of the license for FeenoX are found in the General Public License that
accompanies the source code. Further information about this license is available from the
GNU Project webpage http://www.gnu.org/copyleft/gpl-faq.html.

FeenoX is licensed under the terms of the GNU General Public License version 3 or, at the user convenience,
any later version. This means that users get the four essential freedoms:!

0. The freedom to run the program as they wish, for any purpose.

1. The freedom to study how the program works, and change it so it does their computing as they wish.
2. The freedom to redistribute copies so they can help others.

3. The freedom to distribute copies of their modified versions to others.

So a free program has to be open source, but it also has to explicitly provide the four freedoms above
both through the written license and through appropriate mechanisms to get, modify, compile, run and
document these modifications using well-established and/or reasonable straightforward procedures. That
is why licensing FeenoX as GPLv3+ also implies that the source code and all the scripts and makefiles
needed to compile and run it are available for anyone that requires it (i.e. it is compiled with ./configure +

&& make). Anyone wanting to modify the program either to fix bugs, improve it or add new features is
free to do so. And if they do not know how to program, the have the freedom to hire a programmer to do

"There are some examples of pieces of computational software which are described as “open source” in which even the first
of the four freedoms is denied. The most iconic case is that of Android, whose sources are readily available online but there is no
straightforward way of updating one’s mobile phone firmware with a customized version, not to mention vendor and hardware
lock ins and the possibility of bricking devices if something unexpected happens. In the nuclear industry, it is the case of a Monte
Carlo particle-transport program that requests users to sign an agreement about the objective of its usage before allowing its
execution. The software itself might be open source because the source code is provided after signing the agreement, but it is not
free (as in freedom) at all.

153

http://www.gnu.org/copyleft/gpl.html
http://gmsh.info/doc/texinfo/gmsh.html#Copying-conditions
https://github.com/seamplex/feenox/blob/master/COPYING
http://www.gnu.org/copyleft/gpl-faq.html
https://www.gnu.org/licenses/gpl-3.0

it without needing to ask permission to the original authors. Even more, the documentation is released
under the terms of the Creative Commons Attribution-ShareAlike 4.0 International License so these new
(or modified) features can be properly documented as well.

Nevertheless, since these original authors are the copyright holders, they still can use it to either enforce
or prevent further actions from the users that receive FeenoX under the GPLv3+. In particular, the license
allows re-distribution of modified versions only if

a. they are clearly marked as different from the original, and
b. they are distributed under the same terms of the GPLv3+.

There are also some other subtle technicalities that need not be discussed here such as

- what constitutes a modified version (which cannot be redistributed under a different license)
- what is an aggregate (in which each part be distributed under different licenses)
+ usage over a network and the possibility of using AGPL instead of GPL to further enforce freedom

These issues are already taken into account in the FeenoX licensing scheme.

It should be noted that not only is FeenoX free and open source, but also all of the libraries it depends
on (and their dependencies) also are. It can also be compiled using free and open source build tool chains
running over free and open source operating systems.

These detailed compilation instructions are aimed at amd64 Debian-based GNU/Linux distributions. The
compilation procedure follows the POSIX standard, so it should work in other operating systems and ar-
chitectures as well. Distributions not using apt for packages (i.e. yum) should change the package installation
commands (and possibly the package names). The instructions should also work for in MacOS, although
the apt-get commands should be replaced by brew or similar. Same for Windows under Cygwin, the pack-
ages should be installed through the Cygwin installer. WSL was not tested, but should work as well.

D.4 Quickstart

Note that the quickest way to get started is to download an already-compiled statically-linked binary
executable. Note that getting a binary is the quickest and easiest way to go but it is the less flexible one.
Mind the following instructions if a binary-only option is not suitable for your workflow and/or you do
need to compile the source code from scratch.

On a GNU/Linux box (preferably Debian-based), follow these quick steps. See sec. D.5 for the actual
detailed explanations.

The Git repository has the latest sources repository. To compile, proceed as follows. If something goes
wrong and you get an error, do not hesitate to ask in FeenoX’s discussion page.

If you do not have Git or Autotools, download a source tarball and proceed with the usual
configure & make procedure. See these instructions.

1. Install mandatory dependencies

|
sudo apt-get update

sudo apt-get install git build-essential make automake autoconf libgsl-dev

If you cannot install 1ibgsi-dev but still have git and the build toolchain, you can have the configure
script to download and compile it for you. See point 4 below.

154

https://seamplex.com/feenox/doc/
https://creativecommons.org/licenses/by-sa/4.0/
https://en.wikipedia.org/wiki/GNU_Affero_General_Public_License
https://en.wikipedia.org/wiki/POSIX
https://www.cygwin.com/
https://www.seamplex.com/feenox/#download
https://github.com/seamplex/feenox/discussions
https://seamplex.com/feenox/dist/src/
doc/source.md

2. Install optional dependencies (of course these are optional but recommended)

sudo apt-get install libsundials-dev petsc-dev slepc-dev

3. Clone Github repository

git clone https://github.com/seamplex/feenox

4. Bootstrap, configure, compile & make

|
cd feenox

./autogen.sh
./configure
make -j4

If you cannot (or do not want to) use libgsl-dev from a package repository, call configure with -- +

enable-download-gsl:

./configure --enable-download-gsl

If you do not have Internet access, get the tarball manually, copy it to the same directory as
configure and run again. See the detailed compilation instructions for an explanation.

5. Run test suite (optional)

|
make check

6. Install the binary system wide (optional)
|

sudo make install

If you do not have root permissions, configure with your home directory as prefix and

then make install as a regular user:
|

./configure --prefix=$HOME
make
make install

To stay up to date, pull and then autogen, configure and make (and optionally install):

|
git pull

./autogen.sh

./configure
make -j4
sudo make install

D.5 Detailed configuration and compilation

The main target and development environment is Debian GNU/Linux, although it should be possible to
compile FeenoX in any free GNU/Linux variant (and even the in non-free MacOS and/or Windows plat-
forms) running in virtually any hardware platform. FeenoX can run be run either in HPC cloud servers or
a Raspberry Pi, and almost everything that sits in the middle.

155

compilation.md
https://www.debian.org/

Following the Unix philosophy discussed in the SDS, FeenoX re-uses a lot of already-existing high-quality
free and open source libraries that implement a wide variety of mathematical operations. This leads to a
number of dependencies that FeenoX needs in order to implement certain features.

There is only one dependency that is mandatory, namely GNU GSL (see sec. D.5.1.1), which if it not found
then FeenoX cannot be compiled. All other dependencies are optional, meaning that FeenoX can be com-
piled but its capabilities will be partially reduced.

As per the SRS, all dependencies have to be available on mainstream GNU/Linux distributions and have
to be free and open source software. But they can also be compiled from source in case the package
repositories are not available or customized compilation flags are needed (i.e. optimization or debugging
settings).

In particular, PETSc (and SLEPc) also depend on other mathematical libraries to perform particular oper-
ations such as low-level linear algebra operations. These extra dependencies can be either free (such as
LAPACK) or non-free (such as Intel’s MKL), but there is always at least one combination of a working
setup that involves only free and open source software which is compatible with FeenoX licensing terms
(GPLv3+). See the documentation of each package for licensing details.

D.5.1 Mandatory dependencies

FeenoX has one mandatory dependency for run-time execution and the standard build toolchain for com-
pilation. It is written in C99 so only a C compiler is needed, although make is also required. Free and open
source compilers are favored. The usual C compiler is gcc but clang or Intel’s icc and the newer icx can also
be used.

Note that there is no need to have a Fortran nor a C++ compiler to build FeenoX. They might be needed
to build other dependencies (such as PETSc and its dependencies), but not to compile FeenoX if all the
dependencies are installed from the operating system’s package repositories. In case the build toolchain
is not already installed, do so with

sudo apt-get install gcc make

If the source is to be fetched from the Git repository then not only is git needed but also autoconf and
automake since the configure script is not stored in the Git repository but the autogen.sh script that bootstraps
the tree and creates it. So if instead of compiling a source tarball one wants to clone from GitHub, these
packages are also mandatory:

sudo apt-get install git automake autoconf

Again, chances are that any existing GNU/Linux box has all these tools already installed.

D.5.1.1 The GNU Scientific Library

The only run-time dependency is GNU GSL (not to be confused with Microsoft GSL). It can be installed
with

sudo apt-get install libgsl-dev

In case this package is not available or you do not have enough permissions to install system-wide packages,
there are two options.

156

SDS.md
https://www.gnu.org/software/gsl/
SRS.md
https://petsc.org/release/
https://slepc.upv.es/
http://www.netlib.org/lapack/
https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl.html
https://github.com/seamplex/feenox/
https://www.gnu.org/software/gsl/
https://github.com/microsoft/GSL

1. Pass the option --enable-download-gst to the configure script below.
2. Manually download, compile and install GNU GSL

If the configure script cannot find both the headers and the actual library, it will refuse to proceed. Note
that the FeenoX binaries already contain a static version of the GSL so it is not needed to have it installed
in order to run the statically-linked binaries.

D.5.2 Optional dependencies

FeenoX has three optional run-time dependencies. It can be compiled without any of these, but function-
ality will be reduced:

« SUNDIALS provides support for solving systems of ordinary differential equations (ODEs) or
differential-algebraic equations (DAEs). This dependency is needed when running inputs with the
PHASE_SPACE keyword.

« PETSc provides support for solving partial differential equations (PDEs). This dependency is needed
when running inputs with the prosLEM keyword.

« SLEPc provides support for solving eigen-value problems in partial differential equations (PDEs).
This dependency is needed for inputs with prosLEM types with eigen-value formulations such as

modal and neut ron_sn.
In absence of all these, FeenoX can still be used to

« solve general mathematical problems such as the ones to compute the Fibonacci sequence or the
Logistic map,

« operate on functions, either algebraically or point-wise interpolated such as Computing the deriva-
tive of a function as a Unix filter

« read, operate over and write meshes,

. etc.

These optional dependencies have to be installed separately. There is no option to have configure to down-
load them as with --enable-download-gsl. When running the test suite (sec. D.5.6), those tests that need an
optional dependency which was not found at compile time will be skipped.

D.5.2.1 SUNDIALS

SUNDIALS is a SUite of Nonlinear and DIfferential/ALgebraic equation Solvers. It is used by FeenoX to
solve dynamical systems casted as DAEs with the keyword pHASE sPAcE, like the Lorenz system.

Install either by doing

| |
sudo apt-get install libsundials-dev
| \

or by following the instructions in the documentation.

D.5.2.2 PETSc

The Portable, Extensible Toolkit for Scientific Computation, pronounced PET-see (/pet-siz/), is a suite of
data structures and routines for the scalable (parallel) solution of scientific applications modeled by partial
differential equations. It is used by FeenoX to solve PDEs with the keyword prosLEM, like the NAFEMS LE10
benchmark problem.

157

https://www.gnu.org/software/gsl/
https://computing.llnl.gov/projects/sundials
https://petsc.org/
https://slepc.upv.es/
https://www.seamplex.com/feenox/examples/#the-fibonacci-sequence
https://www.seamplex.com/feenox/examples/#the-logistic-map
https://www.seamplex.com/feenox/examples/#computing-the-derivative-of-a-function-as-a-unix-filter
https://www.seamplex.com/feenox/examples/#computing-the-derivative-of-a-function-as-a-unix-filter
https://computing.llnl.gov/projects/sundials
https://www.seamplex.com/feenox/doc/feenox-manual.html#phase_space
https://www.seamplex.com/feenox/examples/#lorenz-attractor-the-one-with-the-butterfly
(https://petsc.org/)
https://www.seamplex.com/feenox/doc/feenox-manual.html#problem
https://www.seamplex.com/feenox/examples/#nafems-le10-thick-plate-pressure-benchmark
https://www.seamplex.com/feenox/examples/#nafems-le10-thick-plate-pressure-benchmark

Install either by doing

| |
sudo apt-get install petsc-dev
| \

or by following the instructions in the documentation.
Note that

+ Configuring and compiling PETSc from scratch might be difficult the first time. It has a lot of depen-
dencies and options. Read the official documentation for a detailed explanation.

« There is a huge difference in efficiency between using PETSc compiled with debugging symbols and
with optimization flags. Make sure to configure --with-debugging=6 for FeenoX production runs and
leave the debugging symbols (which is the default) for development and debugging only.

+ FeenoX needs PETSc to be configured with real double-precision scalars. It will compile but will
complain at run-time when using complex and/or single or quad-precision scalars.

« FeenoX honors the PETsc_DIR and PETSC_ARCH environment variables when executing configure. If these
two do not exist or are empty, it will try to use the default system-wide locations (i.e. the petsc-dev
package).

D.5.2.3 SLEPc

The Scalable Library for Eigenvalue Problem Computations, is a software library for the solution of large
scale sparse eigenvalue problems on parallel computers. It is used by FeenoX to solve PDEs with the
keyword prosLEM that need eigen-value computations, such as modal analysis of a cantilevered beam.

Install either by doing

| |
sudo apt-get install slepc-dev
| \

or by following the instructions in the documentation.
Note that

« SLEPc is an extension of PETSc so the latter has to be already installed and configured.

« FeenoX honors the sLerc pIR environment variable when executing configure. If it does not exist or
is empty it will try to use the default system-wide locations (i.e. the siepc-dev package).

+ IfPETSc was configured with - -download-stepc then the sLepc_DIR variable has to be set to the directory
inside PETSC_DIR where SLEPc was cloned and compiled.

D.5.3 FeenoX source code
There are two ways of getting FeenoX’s source code:

1. Cloning the GitHub repository at https://github.com/seamplex/feenox
2. Downloading a source tarball from https://seamplex.com/feenox/dist/src/

D.5.3.1 Git repository

The main Git repository is hosted on GitHub at https://github.com/seamplex/feenox. It is public so it
can be cloned either through HTTPS or SSH without needing any particular credentials. It can also be
forked freely. See the Programming Guide for details about pull requests and/or write access to the main
repository.

158

https://petsc.org/release/install/
https://slepc.upv.es/
https://www.seamplex.com/feenox/doc/feenox-manual.html#problem
https://www.seamplex.com/feenox/examples/#five-natural-modes-of-a-cantilevered-wire
https://github.com/seamplex/feenox
https://seamplex.com/feenox/dist/src/
https://github.com/seamplex/feenox
programming.md

Ideally, the main branch should have a usable snapshot. All other branches can contain code that might not
compile or might not run or might not be tested. If you find a commit in the main branch that does not
pass the tests, please report it in the issue tracker ASAP.

After cloning the repository

git clone https://github.com/seamplex/feenox

the autogen.sh script has to be called to bootstrap the working tree, since the configure script is not stored
in the repository but created from configure.ac (which is in the repository) by autogen.sh.

Similarly, after updating the working tree with

git pull

it is recommended to re-run the autogen.sh script. It will do a make clean and re-compute the version string.

D.5.3.2 Source tarballs

When downloading a source tarball, there is no need to run autogen.sh since the configure script is already
included in the tarball. This method cannot update the working tree. For each new FeenoX release, the
whole source tarball has to be downloaded again.

D.5.4 Configuration

To create a proper Makefile for the particular architecture, dependencies and compilation options, the script
configure has to be executed. This procedure follows the GNU Coding Standards.

./configure

Without any particular options, configure will check if the mandatory GNU Scientific Library is available
(both its headers and run-time library). If it is not, then the option --enable-download-gst can be used. This
option will try to use wget (which should be installed) to download a source tarball, uncompress, configure
and compile it. If these steps are successful, this GSL will be statically linked into the resulting FeenoX
executable. If there is no internet connection, the configure script will say that the download failed. In that
case, get the indicated tarball file manually, copy it into the current directory and re-run ./configure.

The script will also check for the availability of optional dependencies. At the end of the execution, a
summary of what was found (or not) is printed in the standard output:

$./configure

Summary of dependencies

GNU Scientific Library from system
SUNDIALS IDA yes

PETSc yes /usr/lib/petsc
SLEPc no

If for some reason one of the optional dependencies is available but FeenoX should not use it, then pass
--without-sundials, --without-petsc and/or --without-slepc as arguments. For example

159

https://www.gnu.org/prep/standards/
https://www.gnu.org/software/gsl/

$./configure --without-sundials --without-petsc

Summary of dependencies

GNU Scientific Library from system
SUNDIALS no
PETSc no
SLEPc no
.1

If configure complains about contradicting values from the cached ones, run autogen.sh again before
configure and/or clone/uncompress the source tarball in a fresh location.

To see all the available options run
|

./configure --help

D.5.5 Source code compilation

After the successful execution of configure, a Makefile is created. To compile FeenoX, just execute

make

Compilation should take a dozen of seconds. It can be even sped up by using the -j option

make -j8

The binary executable will be located in the src directory but a copy will be made in the base directory as
well. Test it by running without any arguments

|
$./feenox

FeenoX v0.2.14-gbbf48c9
a free no-fee no-X uniX-like finite-element(ish) computational engineering tool

usage: feenox [options] inputfile [replacement arguments] [petsc options]
-h, --help display options and detailed explanations of command-line usage
-v, --version display brief version information and exit

-V, --versions display detailed version information

Run with --help for further explanations.
$

The -v (or --version) option shows the version and a copyright notice:

|
$./feenox -v
FeenoX v0.2.14-gbbf48c9
a free no-fee no-X uniX-like finite-element(ish) computational engineering tool

Copyright © 2009--2022 https://seamplex.com/feenox
GNU General Public License v3+, https://www.gnu.org/licenses/gpl.html.
FeenoX is free software: you are free to change and redistribute it.

160

There is NO WARRANTY, to the extent permitted by law.

$

The -v (or --versions) option shows the dates of the last commits, the compiler options and the versions of
the linked libraries:

|
$./feenox -V

FeenoX v0.1.24-g6cfe063
a free no-fee no-X uniX-like finite-element(ish) computational engineering tool

Last commit date : Sun Aug 29 11:34:04 2021 -0300

Build date : Sun Aug 29 11:44:50 2021 -0300

Build architecture : linux-gnu x86 64

Compiler version : gcc (Debian 10.2.1-6) 10.2.1 20210110

Compiler expansion : gcc -Wl,-z,relro -I/usr/include/x86 64-linux-gnu/mpich -L/usr/1ib/x86 64-linux-gnu <=
-lmpich

Compiler flags : -03

Builder : gtheler@chalmers

GSL version : 2.6

SUNDIALS version 1 4.1.0

PETSc version : Petsc Release Version 3.14.5, Mar 03, 2021

PETSc arch :

PETSc options : --build=x86 64-linux-gnu --prefix=/usr --includedir=${prefix}/include --mandir=${ <
prefix}/share/man --infodir=${prefix}/share/info --sysconfdir=/etc --localstatedir=/var --with- <
option-checking=0 --with-silent-rules=0 --libdir=${prefix}/1lib/x86 64-linux-gnu --runstatedir=/run <>
--with-maintainer-mode=0 --with-dependency-tracking=0 --with-debugging=0 --shared-library-extension <=
= real --with-shared-libraries --with-pic=1 --with-cc=mpicc --with-cxx=mpicxx --with-fc=mpif90 -- <>
with-cxx-dialect=C++11 --with-opencl=1 --with-blas-lib=-1blas --with-lapack-lib=-1lapack --with- <>
scalapack=1 --with-scalapack-lib=-1scalapack-openmpi --with-ptscotch=1 --with-ptscotch-include=/usr <
/include/scotch --with-ptscotch-1ib="-1ptesmumps -lptscotch -lptscotcherr" --with-fftw=1 --with- <
fftw-include="[]" --with-fftw-lib="-1fftw3 -1fftw3 mpi" --with-superlu dist=1 --with-superlu dist- <>
include=/usr/include/superlu-dist --with-superlu dist-lib=-lsuperlu_dist --with-hdf5-include=/usr/ <>
include/hdf5/openmpi --with-hdf5-1ib="-L/usr/1ib/x86 64-linux-gnu/hdf5/openmpi -L/usr/1ib/x86 64- <—
linux-gnu/openmpi/lib -1hdf5 -lmpi" --CXX LINKER FLAGS=-W1,--no-as-needed --with-hypre=1 --with- <>
hypre-include=/usr/include/hypre --with-hypre-lib=-1HYPRE core --with-mumps=1 --with-mumps-include <>
="[]1" --with-mumps-1lib="-1ldmumps -lzmumps -lsmumps -lcmumps -lmumps common -lpord" --with- <>
suitesparse=1 --with-suitesparse-include=/usr/include/suitesparse --with-suitesparse-lib="-lumfpack <

-lamd -lcholmod -lklu" --with-superlu=1l --with-superlu-include=/usr/include/superlu --with-superlu <>
-lib=-1superlu --prefix=/usr/lib/petscdir/petsc3.14/x86 64-linux-gnu-real --PETSC ARCH=x86 64-linux <
-gnu-real CFLAGS="-g -02 -ffile-prefix-map=/build/petsc-pVufYp/petsc-3.14.5+dfsgl=. -flto=auto -
ffat-lto-objects -fstack-protector-strong -Wformat -Werror=format-security -fPIC" CXXFLAGS="-g -02 <>
-ffile-prefix-map=/build/petsc-pVufYp/petsc-3.14.5+dfsgl=. -flto=auto -ffat-lto-objects -fstack- <
protector-strong -Wformat -Werror=format-security -fPIC" FCFLAGS="-g -02 -ffile-prefix-map=/build/ <>
petsc-pVufYp/petsc-3.14.5+dfsgl=. -flto=auto -ffat-lto-objects -fstack-protector-strong -fPIC - <>
ffree-line-length-0" FFLAGS="-g -02 -ffile-prefix-map=/build/petsc-pVufYp/petsc-3.14.5+dfsgl=. - <>
flto=auto -ffat-lto-objects -fstack-protector-strong -fPIC -ffree-line-length-0" CPPFLAGS="-Wdate- <~
time -D_FORTIFY_SOURCE=2" LDFLAGS="-WLl,-Bsymbolic-functions -flto=auto -Wl,-z,relro -fPIC" <>
MAKEFLAGS=w

SLEPc version : SLEPc Release Version 3.14.2, Feb 01, 2021

$

D.5.6 Test suite

The test directory contains a set of test cases whose output is known so that unintended regressions can
be detected quickly (see the programming guide for more information). The test suite ought to be run after
each modification in FeenoX’s source code. It consists of a set of scripts and input files needed to solve

161

https://github.com/seamplex/feenox/tree/main/tests
programming.md

dozens of cases. The output of each execution is compared to a reference solution. In case the output does
not match the reference, the test suite fails.

After compiling FeenoX as explained in sec. D.5.5, the test suite can be run with make check. Ideally every-
thing should be green meaning the tests passed:

|
$ make check

Making check in src

make[1]: Entering directory '/home/gtheler/codigos/feenox/src'
make[1]: Nothing to be done for 'check'

make[1]: Leaving directory '/home/gtheler/codigos/feenox/src'
make[1]: Entering directory '/home/gtheler/codigos/feenox'
cp -r src/feenox .

make check-TESTS

make[2]: Entering directory '/home/gtheler/codigos/feenox'
make[3]: Entering directory '/home/gtheler/codigos/feenox'
XFAIL: tests/abort.sh

PASS: tests/algebraic expr.sh

PASS: tests/beam-modal.sh

PASS: tests/beam-ortho.sh

PASS: tests/builtin.sh

PASS: tests/cylinder-traction-force.sh

PASS: tests/default_argument_value.sh

PASS: tests/expressions constants.sh

PASS: tests/expressions variables.sh

PASS: tests/expressions_functions.sh

PASS: tests/exp.sh

PASS: tests/i-beam-euler-bernoulli.sh

PASS: tests/iaea-pwr.sh

PASS: tests/iterative.sh

PASS: tests/fit.sh

PASS: tests/function_algebraic.sh

PASS: tests/function_data.sh

PASS: tests/function file.sh

PASS: tests/function vectors.sh

PASS: tests/integral.sh

PASS: tests/laplace2d.sh

PASS: tests/materials.sh

PASS: tests/mesh.sh

PASS: tests/moment-of-inertia.sh

PASS: tests/nafems-lel.sh

PASS: tests/nafems-1el0.sh

PASS: tests/nafems-lell.sh

PASS: tests/nafems-tl-4.sh

PASS: tests/nafems-t2-3.sh

PASS: tests/neutron diffusion src.sh

PASS: tests/neutron diffusion keff.sh

PASS: tests/parallelepiped.sh

PASS: tests/point-kinetics.sh

PASS: tests/print.sh

PASS: tests/thermal-1d.sh

PASS: tests/thermal-2d.sh

PASS: tests/trig.sh

PASS: tests/two-cubes-isotropic.sh

PASS: tests/two-cubes-orthotropic.sh

PASS: tests/vector.sh

XFAIL: tests/xfail-few-properties-ortho-young.sh
XFAIL: tests/xfail-few-properties-ortho-poisson.sh

1
1

XFAIL: tests/xfail-few-properties-ortho-shear.sh

Testsuite summary for feenox v0.2.6-g3237ce9

TOTAL: 43
PASS:
SKIP:
XFAIL:
FAIL:
XPASS:
ERROR:

make[3]: Leaving directory '/home/gtheler/codigos/feenox'
make[2]: Leaving directory '/home/gtheler/codigos/feenox'
make[1l]: Leaving directory '/home/gtheler/codigos/feenox'
$

The xraIL result means that those cases are expected to fail (they are there to test if FeenoX can handle
errors). Failure would mean they passed. In case FeenoX was not compiled with any optional dependency,

the corresponding tests will be skipped. Skipped tests do not mean any failure, but that the compiled
FeenoX executable does not have the full capabilities. For example, when configuring with ./configure +
--without-petsc (but with SUNDIALS), the test suite output should be a mixture of green and blue:

$./configure --without-petsc

[...]
configure: creating ./src/version.h

Summary of dependencies

GNU Scientific Library from system
SUNDIALS yes
PETSc no
SLEPc no
Compiler gcc
checking that generated files are newer than configure...
configure: creating ./config.status
config.status: creating Makefile
config.status: creating src/Makefile
config.status: creating doc/Makefile
config.status: executing depfiles commands
$ make
loool
$ make check
Making check in src
make[1l]: Entering directory '/home/gtheler/codigos/feenox/src'
make[1l]: Nothing to be done for 'check'
make[1l]: Leaving directory '/home/gtheler/codigos/feenox/src'
make[1l]: Entering directory '/home/gtheler/codigos/feenox'
cp -r src/feenox .
make check-TESTS
make[2]: Entering directory '/home/gtheler/codigos/feenox'
make[3]: Entering directory '/home/gtheler/codigos/feenox'
XFAIL: tests/abort.sh
PASS: tests/algebraic expr.sh
SKIP: tests/beam-modal.sh
SKIP: tests/beam-ortho.sh
PASS: tests/builtin.sh

SKIP: tests/cylinder-traction-force.sh
PASS: tests/default_argument value.sh
PASS: tests/expressions constants.sh
PASS: tests/expressions variables.sh
PASS: tests/expressions_functions.sh
PASS: tests/exp.sh

SKIP: tests/i-beam-euler-bernoulli.sh
SKIP: tests/iaea-pwr.sh

PASS: tests/iterative.sh

PASS: tests/fit.sh

PASS: tests/function_algebraic.sh
PASS: tests/function_data.sh

PASS: tests/function file.sh

PASS: tests/function_vectors.sh

PASS: tests/integral.sh

SKIP: tests/laplace2d.sh

PASS: tests/materials.sh

PASS: tests/mesh.sh

PASS: tests/moment-of-inertia.sh

SKIP: tests/nafems-lel.sh

SKIP: tests/nafems-1el0.sh

SKIP: tests/nafems-lell.sh

SKIP: tests/nafems-tl-4.sh

SKIP: tests/nafems-t2-3.sh

SKIP: tests/neutron diffusion src.sh
SKIP: tests/neutron_diffusion_keff.sh
SKIP: tests/parallelepiped.sh

PASS: tests/point-kinetics.sh

PASS: tests/print.sh

SKIP: tests/thermal-1d.sh

SKIP: tests/thermal-2d.sh

PASS: tests/trig.sh

SKIP: tests/two-cubes-isotropic.sh
SKIP: tests/two-cubes-orthotropic.sh
PASS: tests/vector.sh

SKIP: tests/xfail-few-properties-ortho-young.sh
SKIP: tests/xfail-few-properties-ortho-poisson.sh
SKIP: tests/xfail-few-properties-ortho-shear.sh

Testsuite summary for feenox v0.2.6-g3237ce9

TOTAL: 43
PASS: 21
SKIP: 21
XFAIL:
FAIL:
XPASS:
ERROR:

make[3]: Leaving directory '/home/gtheler/codigos/feenox'
make[2]: Leaving directory '/home/gtheler/codigos/feenox'
make[1l]: Leaving directory '/home/gtheler/codigos/feenox"'

$
|

To illustrate how regressions can be detected, let us add a bug deliberately and re-run the test suite.

Edit the source file that contains the shape functions of the second-order tetrahedra src/mesh/tet10.c, find
the function feenox_mesh_tet10_h() and randomly change a sign, i.e. replace

‘ return t*(2*t-1);

with

‘ return t*(2*t+l);

Save, recompile, and re-run the test suite to obtain some red:

|
$ git diff src/mesh/

diff --git a/src/mesh/tetl0.c b/src/mesh/tetl0.c
index 72bc838..293c290 100644
--- a/src/mesh/tetl0.c
+++ b/src/mesh/tetl0.c
@@ -227,7 +227,7 @@ double feenox mesh tetl® h(int j, double *vec r) {
return s*(2*s-1)
break;
case 3:
return t*(2*t-1)
return t*(2*t+1);
break;

case 4:
$ make
[...1
$ make check
Making check in src
make[1l]: Entering directory '/home/gtheler/codigos/feenox/src'
make[1]: Nothing to be done for 'check'
make[1l]: Leaving directory '/home/gtheler/codigos/feenox/src'
make[1l]: Entering directory '/home/gtheler/codigos/feenox'
cp -r src/feenox .
make check-TESTS
make[2]: Entering directory '/home/gtheler/codigos/feenox"
make[3]: Entering directory '/home/gtheler/codigos/feenox'
XFAIL: tests/abort.sh
PASS: tests/algebraic_expr.sh
FAIL: tests/beam-modal.sh
PASS: tests/beam-ortho.sh
PASS: tests/builtin.sh
PASS: tests/cylinder-traction-force.sh
PASS: tests/default argument value.sh
PASS: tests/expressions_constants.sh
PASS: tests/expressions variables.sh
PASS: tests/expressions functions.sh
PASS: tests/exp.sh
PASS: tests/i-beam-euler-bernoulli.sh
PASS: tests/iaea-pwr.sh
PASS: tests/iterative.sh
PASS: tests/fit.sh
PASS: tests/function algebraic.sh
PASS: tests/function_data.sh
PASS: tests/function file.sh
PASS: tests/function vectors.sh
PASS: tests/integral.sh
PASS: tests/laplace2d.sh
PASS: tests/materials.sh
PASS: tests/mesh.sh

165

PASS: tests/moment-of-inertia.sh

PASS: tests/nafems-lel.sh

FAIL: tests/nafems-1el0.sh

FAIL: tests/nafems-lell.sh

PASS: tests/nafems-tl-4.sh

PASS: tests/nafems-t2-3.sh

PASS: tests/neutron diffusion src.sh

PASS: tests/neutron_diffusion_keff.sh

FAIL: tests/parallelepiped.sh

PASS: tests/point-kinetics.sh

PASS: tests/print.sh

PASS: tests/thermal-1d.sh

PASS: tests/thermal-2d.sh

PASS: tests/trig.sh

PASS: tests/two-cubes-isotropic.sh

PASS: tests/two-cubes-orthotropic.sh

PASS: tests/vector.sh

XFAIL: tests/xfail-few-properties-ortho-young.sh
XFAIL: tests/xfail-few-properties-ortho-poisson.sh
XFAIL: tests/xfail-few-properties-ortho-shear.sh

Testsuite summary for feenox v0.2.6-g3237ce9

TOTAL: 43
PASS: 35
SKIP:
XFAIL:
FAIL:
XPASS:
ERROR:

See ./test-suite.log
Please report to jeremy@seamplex.com

: kxk [Makefile:1152: test-suite.log] Error 1

: Leaving directory '/home/gtheler/codigos/feenox'
1 *xxx [Makefile:1260: check-TESTS] Error 2

: Leaving directory '/home/gtheler/codigos/feenox'
: *xx [Makefile:1791: check-am] Error 2

: Leaving directory '/home/gtheler/codigos/feenox"
** [Makefile:1037: check-recursive] Error 1

D.5.7 Installation

To be able to execute FeenoX from any directory, the binary has to be copied to a directory available in the
PATH environment variable. If you have root access, the easiest and cleanest way of doing this is by calling
make install with sudo or su:

|
$ sudo make install

Making install in src
make[1]: Entering directory '/home/gtheler/codigos/feenox/src'
gmake[2]: Entering directory '/home/gtheler/codigos/feenox/src'
/usr/bin/mkdir -p '/usr/local/bin'

/usr/bin/install -c feenox '/usr/local/bin'
gmake[2]: Nothing to be done for 'install-data-am'.
gmake[2]: Leaving directory '/home/gtheler/codigos/feenox/src'

make[1l]: Leaving directory '/home/gtheler/codigos/feenox/src'
make[1]: Entering directory '/home/gtheler/codigos/feenox"

cp -r src/feenox .

make[2]: Entering directory '/home/gtheler/codigos/feenox'
make[2]: Nothing to be done for 'install-exec-am'.

make[2]: Nothing to be done for 'install-data-am'.
make[2]: Leaving directory '/home/gtheler/codigos/feenox'
make[1]: Leaving directory '/home/gtheler/codigos/feenox'
$

If you do not have root access or do not want to populate /usr/local/bin, you can either
« Configure with a different prefix (not covered here), or

« Copy (or symlink) the feenox executable to $HOME/bin:

|
mkdir -p ${HOME}/bin

cp feenox ${HOME}/bin

If you plan to regularly update FeenoX (which you should), you might want to symlink instead of
copy so you do not need to update the binary in sHoME/bin each time you recompile:

|
mkdir -p ${HOME}/bin

1n -sf feenox ${HOME}/bin

Check that FeenoX is now available from any directory (note the command is feenox and not ./feenox):

|
$ cd

$ feenox -v
FeenoX v0.2.14-gbbf48c9
a free no-fee no-X uniX-like finite-element(ish) computational engineering tool

Copyright © 2009--2022 https://seamplex.com/feenox

GNU General Public License v3+, https://www.gnu.org/licenses/gpl.html.
FeenoX is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.

$

If it is not and you went through the sHome/bin path, make sure it is in the PATH (pun). Add

export PATH=${PATH}:${HOME}/bin

to your .bashrc in your home directory and re-login.

D.6 Advanced settings

D.6.1 Compiling with debug symbols
By default the C flags are -03, without debugging. To add the -g flag, just use cFLAGS when configuring:

./configure CFLAGS="-g -00"

167

D.6.2 Using a different compiler

FeenoX uses the cc environment variable to set the compiler. So configure like

|
export CC=clang; ./configure

Note that the cc variable has to be exported and not passed to configure. That is to say, don’t configure like

| |
./configure CC=clang
| \

Mind also the following environment variables when using MPI-enabled PETSc:

e MPICH CC
¢ OMPI CC
e I MPI CC

Depending on how your system is configured, this last command might show ctlang but not actually use
it. The FeenoX executable will show the configured compiler and flags when invoked with the --versions
option:
| $ feenox --versions

FeenoX v0.2.14-gbbf48c9

a free no-fee no-X uniX-like finite-element(ish) computational engineering tool

Last commit date : Sat Feb 12 15:35:05 2022 -0300

Build date : Sat Feb 12 15:35:44 2022 -0300

Build architecture : linux-gnu x86 64

Compiler version : gcc (Debian 10.2.1-6) 10.2.1 20210110

Compiler expansion : gcc -Wl,-z,relro -I/usr/include/x86 64-linux-gnu/mpich -L/usr/1ib/x86 64-linux-gnu <=
-lmpich

Compiler flags : -03

Builder : gtheler@tom

GSL version 1 2.6

SUNDIALS version : 5.7.0

PETSc version : Petsc Release Version 3.16.3, Jan 05, 2022

PETSc arch : arch-linux-c-debug

PETSc options : --download-eigen --download-hdf5 --download-hypre --download-metis --download-mumps <—

--download- parmetls --download-pragmatic --download-scalapack
SLEPc version : SLEPc Release Version 3.16.1, Nov 17, 2021
$

You can check which compiler was actually used by analyzing the feenox binary as

|
$ objdump -s --section .comment ./feenox

./feenox: file format elf64-x86-64

Contents of section .comment:

0000 4743433a 20284465 6269616e 2031322e GCC: (Debian 12.
0010 322e302d 31342920 31322e32 2e300044 2.0-14) 12.2.0.D
0020 65626961 6e20636¢C 616€6720 76657273 ebian clang vers
0030 6967620 31342e30 2e3600 ion 14.0.6.

$

It should be noted that the MPI implementation used to compile FeenoX has to match the one used to
compile PETSc. Therefore, if you compiled PETSc on your own, it is up to you to ensure MPI compatibility.

168

If you are using PETSc as provided by your distribution’s repositories, you will have to find out which one
was used (it is usually OpenMPI) and use the same one when compiling FeenoX. FeenoX has been tested
using PETSc compiled with

« MPICH
+ OpenMPI
« Intel MPI

D.6.3 Compiling PETSc

Particular explanation for FeenoX is to be done. For now, follow the general explanation from PETSc’s
website.

| export PETSC DIR=$PWD
export PETSC ARCH=arch-linux-c-opt
./configure --with-debugging=0 --download-mumps --download-scalapack --with-cxx=0 --COPTFLAGS=-03 -- <>
FOPTFLAGS=-03

export PETSC_DIR=$PWD
./configure --with-debugging=0 --with-openmp=0 --with-x=0 --with-cxx=0 --COPTFLAGS=-03 --FOPTFLAGS=-03
make PETSC DIR=/home/ubuntu/reflex-deps/petsc-3.17.2 PETSC ARCH=arch-linux-c-opt all

169

https://petsc.org/release/install/
https://petsc.org/release/install/

Appendix E

Appendix: Inputs for solving LE10 with
other FEA programs

This appendix illustrates the differences in the input file formats used by FeenoX and the ones used by
other open source finite-element solvers. The problem being solved is the NAFEMS LE10 benchmark, first
discussed in sec. 1.2:

NAFEMS Benchmark LE-10: thick plate pressure
PROBLEM mechanical DIMENSIONS 3
READ_MESH nafems-lel@.msh # mesh in millimeters

LOADING: uniform normal pressure on the upper surface
BC upper p=1 # 1 Mpa

BOUNDARY CONDITIONS:
BC DCD'C' v=0
BC ABA'B' u=0
BC BCB'C' u=0 v=0
BC midplane w=0

1

Face DCD'C' zero y-displacement
Face ABA'B' zero x-displacement
Face BCB'C' x and y displ. fixed
z displacements fixed along mid-plane

H W

#

MATERIAL PROPERTIES: isotropic single-material properties
E = 210e3 # Young modulus in MPa
nu = 0.3 # Poisson's ratio

SOLVE_PROBLEM # solve!

print the direct stress y at D (and nothing more)
PRINT "o y @ D = " sigmay(2000,0,300) "MPa"

See the following URL and its links for further details about solving this problem with the other codes:
https://cofea.readthedocs.io/en/latest/benchmarks/004-eliptic-membrane/tested-codes.html

E.1 CalculiX

Kk MeSh ++++ttttttttttttttttttt bttt bbbttt bbb bbb

*INCLUDE, INPUT=Mesh/fine-lin-hex.inp # Path to mesh for ccx solver

¥ Mesh ++++++++++t+ttttttttttttttt bttt

170

https://www.seamplex.com/feenox/examples/#nafems-le10-thick-plate-pressure-benchmark
https://cofea.readthedocs.io/en/latest/benchmarks/004-eliptic-membrane/tested-codes.html

*MATERIAL, NAME=Steel # Defining a material

*DENSITY

7800 # Defining a density

*ELASTIC,

2.1lell, 0.3 # Defining Young modulus and Poisson's ratio

*% SeCctions ++++++++tHtHHt bbbt

*SOLID SECTION, ELSET=ELIPSE, MATERIAL=Steel # Assigning material and plane stress elements
0.1, # to the elements sets in mesh and adding thickness

¥k Steps +ttttttttttttt bbbt bbb

*STEP # Begin of analysis
*STATIC, SOLVER=SPOOLES # Selection of elastic analysis

*% Field outputs ++++++++ttttttttttttttttttttttttttttttttt++

*EL FILE # Commands responsible for saving results
E, S

*NODE FILE

U

** Boundary conditions +++++++++tttttttbb bbb

*BOUNDARY, # Applying translation = 0 on desired nodes
AB,1,1,0

*BOUNDARY

CD,2,2,0

** Boundary conditions(adding pressure) +++++++++++tttt+++

*DLOAD
*INCLUDE, INPUT=Pressure/fine-lin-hex.dlo

*% End step +++ttttttttttttt bbbttt bbb

*END STEP # End on analysis

E.2 Code Aster

mesh = LIRE_MAILLAGE(identifier='0:1", # Reading a mesh
FORMAT="IDEAS',
UNITE=80)

model

AFFE_MODELE(identifier='1:1", # Assignig plane stress
AFFE=_ F(MODELISATION=('C PLAN',), # elements to mesh
PHENOMENE="'MECANIQUE',
TOUT='0UI'),
MAILLAGE=mesh)

mater = DEFI_MATERIAU(identifier='2:1", # Defining elastic material
ELAS= F(E=210000000000.0,
NU=0.3))
materfl = AFFE_MATERIAU(identifier='3:1"', # Assigning material to model

171

AFFE=_F(MATER=(mater,),
TOUT="'0UI"),
MODELE=model)

mecabc

AFFE_CHAR MECA(identifier='4:1"'
DDL IMPO=(F(DX=0.0,
GROUP_MA=('AB',)),
_F(DY=0.0,
GROUP_MA=('CD',))),
MODELE=model)

mecach = AFFE_CHAR MECA(identifier='5:1",
MODELE=model,
PRES_REP=_F(GROUP_MA=('BC',),
PRES=-10000000.0))

result = MECA STATIQUE(identifier='6:1"',
CHAM_MATER=materfl,
EXCIT=(_F(CHARGE=mecabc),
_F(CHARGE=mecach)),
MODELE=model)

SYY = CALC_CHAMP(identifier='7:1",
CHAM_MATER=materfl,
CONTRAINTE=('SIGM NOEU',6),
MODELE=model,
RESULTAT=result)

IMPR_RESU(identifier='8:1",
FORMAT="'MED "',
RESU=(_F(RESULTAT=result),

_F(RESULTAT=SYY)),
UNITE=80)

FIN()

Applying boundary conditions
displacement = 0
to the selected group of elements

Applying pressure to the
group of elements

Defining the results of
simulation

Calculating stresses in
computed domain

Saving the results

E.3 Elmer

Header
CHECK KEYWORDS Warn
Mesh DB "." "."
Include Path ""
Results Directory ""
End

Simulation
Max Output Level = 5
Coordinate System = Cartesian
Coordinate Mapping(3) =12 3
Simulation Type = Steady state
Steady State Max Iterations =1
Output Intervals =1
Timestepping Method = BDF
BDF Order =1
Solver Input File = case.sif
Post File = case.vtu

172

Path to the mesh

Path to results directory

Settings and constants for simulation

End

Constants
Gravity(4) = 0 -1 0 9.82
Stefan Boltzmann = 5.67e-08
Permittivity of Vacuum = 8.8542e-12
Boltzmann Constant = 1.3807e-23
Unit Charge = 1.602e-19

End

Body 1
Target Bodies(1l) = 10
Name = "Body Property 1"

Equation = 1
Material =1
End
Solver 2
Equation = Linear elasticity
Procedure = "StressSolve" "StressSolver"

Calculate Stresses = True

Variable = -dofs 2 Displacement
Exec Solver = Always

Stabilize = True

Bubbles = False

Lumped Mass Matrix = False
Optimize Bandwidth = True

Steady State Convergence Tolerance = 1.0e-5
Nonlinear System Convergence Tolerance = 1.
Nonlinear System Max Iterations 20
Nonlinear System Newton After Iterations
Nonlinear System Newton After Tolerance
Nonlinear System Relaxation Factor 1
Linear System Solver = Direct
Linear System Direct Method = Umfpack
End

1

Solver 1
Equation = SaveScalars
Save Points = 26
Procedure = "SaveData" "SaveScalars"
Filename = file.dat
Exec Solver = After Simulation
End
Equation 1
Name = "STRESS"

Calculate Stresses = True

Plane Stress = True

Active Solvers(1)
End

Equation 2
Name = "DATA"
Active Solvers(1)
End

Material 1

Assigning the material and equations to the mesh

Solver settings

Oe-7

3
.0e-3

Saving the results from node at point D

Setting active solvers

Turning on plane stress simulation

Defining the material

173

Name = "STEEL"

Poisson ratio = 0.3

Porosity Model = Always saturated
Youngs modulus = 2.1lell

End

Boundary Condition 1 # Applying the boundary conditions
Target Boundaries(1l) = 12
Name = "AB"
Displacement 1 = 0

End

Boundary Condition 2
Target Boundaries(1l) = 13
Name = "CD"
Displacement 2 = 0

End

Boundary Condition 3
Target Boundaries(1l) = 14
Name = "BC"
Normal Force = 10e6

End

174

	Introduction
	“Cloud first” vs. “cloud friendly”
	Unfair advantage
	Licensing
	Objective
	Scope
	NAFEMS LE10 benchmark
	The Lorenz chaotic system

	Architecture
	Deployment
	Execution
	Direct execution
	Parametric
	Optimization loops

	Efficiency
	Scalability
	Flexibility
	Extensibility
	Interoperability

	Interfaces
	Problem input
	Syntactic sugar & highlighting
	Definitions and instructions
	Simple inputs
	Complex things
	Everything is an expression
	Matching formulations
	Comparison of solutions
	Run-time arguments
	Git and macro-friendliness

	Results output
	Output formats
	Data exchange between non-conformal meshes

	Quality assurance
	Reproducibility and traceability
	Automated testing
	Bug reporting and tracking
	Documentation

	Appendix: Downloading and compiling FeenoX
	Binary executables
	Source tarballs
	Git repository

	Appendix: Rules of Unix philosophy
	Rule of Modularity
	Rule of Clarity
	Rule of Composition
	Rule of Separation
	Rule of Simplicity
	Rule of Parsimony
	Rule of Transparency
	Rule of Robustness
	Rule of Representation
	Rule of Least Surprise
	Rule of Silence
	Rule of Repair
	Rule of Economy
	Rule of Generation
	Rule of Optimization
	Rule of Diversity
	Rule of Extensibility

	Appendix: FeenoX history
	Appendix: Downloading & compiling
	Debian/Ubuntu install
	Downloads
	Statically-linked binaries
	Compile from source
	Github repository

	Licensing
	Quickstart
	Detailed configuration and compilation
	Mandatory dependencies
	The GNU Scientific Library

	Optional dependencies
	SUNDIALS
	PETSc
	SLEPc

	FeenoX source code
	Git repository
	Source tarballs

	Configuration
	Source code compilation
	Test suite
	Installation

	Advanced settings
	Compiling with debug symbols
	Using a different compiler
	Compiling PETSc

	Appendix: Inputs for solving LE10 with other FEA programs
	CalculiX
	Code Aster
	Elmer

	Appendix: Downloading and compiling FeenoX
	Binary executables
	Source tarballs
	Git repository

	Appendix: Rules of Unix philosophy
	Rule of Modularity
	Rule of Clarity
	Rule of Composition
	Rule of Separation
	Rule of Simplicity
	Rule of Parsimony
	Rule of Transparency
	Rule of Robustness
	Rule of Representation
	Rule of Least Surprise
	Rule of Silence
	Rule of Repair
	Rule of Economy
	Rule of Generation
	Rule of Optimization
	Rule of Diversity
	Rule of Extensibility

	Appendix: FeenoX history
	Appendix: Downloading & compiling
	Debian/Ubuntu install
	Downloads
	Statically-linked binaries
	Compile from source
	Github repository

	Licensing
	Quickstart
	Detailed configuration and compilation
	Mandatory dependencies
	The GNU Scientific Library

	Optional dependencies
	SUNDIALS
	PETSc
	SLEPc

	FeenoX source code
	Git repository
	Source tarballs

	Configuration
	Source code compilation
	Test suite
	Installation

	Advanced settings
	Compiling with debug symbols
	Using a different compiler
	Compiling PETSc

	Appendix: Inputs for solving LE10 with other FEA programs
	CalculiX
	Code Aster
	Elmer

