
Solving mazes with PDEs instead of AI
FeenoX Tutorial #2

Contents

1 Foreword 2
1.1 Executive summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Creating the mesh 3

3 Solving the steady-state Laplace equation 10

4 Results 11

5 Transient Laplace 12

6 Homework 14

2024-01-15 / 7dcff9f+dirty



Solving mazes with PDEs instead of AI

1 Foreword

Welcome the the Second Feenox tutorial, very much inspired on Donald Knuth’s Selected Papers on Fun
and Games. And a little bit on Homer Simpson.

Figure 1: Homer trying to solve a maze on a placemat

Say you want to solve a maze drawn in a restaurant’s placemat: one where both the start and end points
are known beforehand as shown in fig. 1. Nowadays the first instinctive reaction would be to fire some
fancy AI or ML algorithm. But we are actual engineers and we do value nice maths hacks, don’t we? In
order to avoid falling into the alligator’s mouth, we can exploit the ellipticity of the Laplacian operator to
solve any maze—even hand-drawn ones. Just FeenoX and a bunch of standard open source tools to convert
a bitmapped picture of the maze into an unstructured mesh.

A couple of LinkedIn posts to see some comments and discussions:

• https://www.linkedin.com/feed/update/urn:li:activity:6831291311832760320/
• https://www.linkedin.com/feed/update/urn:li:activity:6973982270852325376/

Other people’s maze-related posts:

• https://www.linkedin.com/feed/update/urn:li:activity:7117082910381232128/
• https://www.linkedin.com/feed/update/urn:li:activity:6972370982489509888/
• https://www.linkedin.com/feed/update/urn:li:activity:6972949021711630336/
• https://www.linkedin.com/feed/update/urn:li:activity:6973522069703516160/
• https://www.linkedin.com/feed/update/urn:li:activity:6973921855275458560/
• https://www.linkedin.com/feed/update/urn:li:activity:6974663157952745472/
• https://www.linkedin.com/feed/update/urn:li:activity:6974979951049519104/
• https://www.linkedin.com/feed/update/urn:li:activity:6982049404568449024/

1.1 Executive summary

We will…

1. Create and download a random maze online.

2. Create a FEM mesh for the aisle of the maze (the walls will be the boundary of the domain) using
Gmsh.

2024-01-15 / / 7dcff9f+dirty 2/16

https://web.stanford.edu/group/cslipublications/cslipublications/site/9781575865843.shtml
https://web.stanford.edu/group/cslipublications/cslipublications/site/9781575865843.shtml
https://www.seamplex.com/feenox/
https://www.linkedin.com/feed/update/urn:li:activity:6831291311832760320/
https://www.linkedin.com/feed/update/urn:li:activity:6973982270852325376/
https://www.linkedin.com/feed/update/urn:li:activity:7117082910381232128/
https://www.linkedin.com/feed/update/urn:li:activity:6972370982489509888/
https://www.linkedin.com/feed/update/urn:li:activity:6972949021711630336/
https://www.linkedin.com/feed/update/urn:li:activity:6973522069703516160/
https://www.linkedin.com/feed/update/urn:li:activity:6973921855275458560/
https://www.linkedin.com/feed/update/urn:li:activity:6974663157952745472/
https://www.linkedin.com/feed/update/urn:li:activity:6974979951049519104/
https://www.linkedin.com/feed/update/urn:li:activity:6982049404568449024/
http://gmsh.info/


Solving mazes with PDEs instead of AI

3. Solve ∇2φ(x, y) = 0 subject to the following boundary conditions:


φ(x, y) = 1 at the inlet
φ(x, y) = 0 at the outlet
∂φ
∂n = 0 everywhere else

PROBLEM laplace 2D
READ_MESH maze.msh

BC start phi=0
BC end phi=1

SOLVE_PROBLEM

4. Show the solution of the maze given by ∇φ, properly scaled, in Gmsh:
# write the norm of gradient as a scalar f ie ld
# and the gradient as a 2d vector into a .msh f i l e
WRITE_MESH maze-solved.msh \

sqrt(dphidx(x,y)^2+dphidy(x,y)^2) \
VECTOR dphidx dphidy 0

5. As a bonus, we will also solve a transient case to see how Laplace “tries” all the paths and only keeps
the ones that do not find any dead end.

2 Creating the mesh

1. Go to http://www.mazegenerator.net/

2. Choose shape, style, width, height, etc. and create a maze

2024-01-15 / / 7dcff9f+dirty 3/16

http://gmsh.info/
http://www.mazegenerator.net/


Solving mazes with PDEs instead of AI

(a) Bitmapped maze from https://www.mazegenerator.net (left) and 2D mesh (right)

(b) Solution to found by FeenoX (and drawn by Gmsh)

Figure 2: Bitmapped, meshed and solved mazes.

2024-01-15 / / 7dcff9f+dirty 4/16

https://www.mazegenerator.net


Solving mazes with PDEs instead of AI

3. Download it in PNG (fig. 2a)

4. Perform some manipulations and conversions. We are going to need a bunch of free an open source
tools:

sudo apt-get install imagemagick potrace inkscape pstoedit make g++

a. Invert the PNG and convert it to PNM with convert so the aisles are black and the walls are
white:

convert maze.png -negate maze_negated.pnm

2024-01-15 / / 7dcff9f+dirty 5/16



Solving mazes with PDEs instead of AI

b. Vectorize the negated bitmap into an SVG with potrace:

potrace maze_negated.pnm --alphamax 0 --opttolerance 0 -b svg -o maze.svg

c. Convert the SVG to EPS with inskcape

inkscape maze.svg --export-eps=maze.eps

d. Convert the EPS to DXF with pstoedit

pstoedit -dt -f 'dxf:-polyaslines -mm' maze.eps > maze.dxf

e. Convert the DXF to a Gmsh’s .geo with dxf2geo (a C++ tool that comes with Gmsh)

make dxf2geo
./dxf2geo maze.dxf 0.1

The tutorial directory contains a convenience script to perfom all these steps in a single call. Just
name your PNG maze.png and run ./png2geo.sh.

5. The last file maze.geo contains only lines with the walls of the maze. We need to tell FeenoX where
the maze starts and where it ends. Open it with Gmsh:

gmsh maze.geo

2024-01-15 / / 7dcff9f+dirty 6/16



Solving mazes with PDEs instead of AI

We have to

i. Add a surface for the aisles of the maze (i.e. the 2D domain where we will apply the Laplace
operator):

• In the left-pane tree, go to Geometry → Elementary entities → Add → Plane Surface.

• When prompted to “select surface boundary” click on any of the blue edges. They all
should turn to red:

• Press e to end selection and q to exit the selection mode.

• Press 2 to make a preliminary 2D mesh to see if it worked:

2024-01-15 / / 7dcff9f+dirty 7/16



Solving mazes with PDEs instead of AI

• Go to Geometry → Physical groups → Add → Surface.

• When prompted to “select surfaces” click on any point of the maze. The mesh should turn
red:

• Write “aisles” as the group’s name.

• Press e to end the selection. You might need to click somewhere in the Gmsh window so
as to get the focus out of the name text field.

• Press q to exit the selection mode.

• Press 0 to reload the maze.geo file and remove the temporary mesh.

ii. Set physical curves for “start” and “end” (i.e. the 1D edges that will hold the Dirichlet boundary
conditions)

2024-01-15 / / 7dcff9f+dirty 8/16



Solving mazes with PDEs instead of AI

• In the left-pane tree, go to Geometry → Physical groups → Add → Curve.

• When prompted to “select curves” click on the edge (or edges) that define the inlet.

• Write “start” as the group’s name.

• Press e to end the selection. You might need to click somewhere in the Gmsh window so
as to get the focus out of the name text field.

• Do the same thing for the outlet, and name it “end.” Alternatively, find out the edge id of
the outlet by zooming in a little bit into the outlet and then going to Tools → Options →
Geometry → Curve Labels:

In this case, the curve id is 278. So we can edit the file maze.geo and add this line at the very
end:

2024-01-15 / / 7dcff9f+dirty 9/16



Solving mazes with PDEs instead of AI

Physical Curve("end") = {278};

Now our maze.geo contains a proper definition of the domain where we will solve ∇2φ = 0.

6. Create the actual mesh maze.msh out of maze.geo

gmsh -2 maze.geo

3 Solving the steady-state Laplace equation

We have to solve ∇2φ = 0 with the following boundary conditions


φ = 0 at “start”
φ = 1 at “end”
∇φ · n̂ = 0 everywhere else

The solution to the maze is given by the gradient of the solution ∇φ.

This translates into FeenoX to the following input file:
PROBLEM laplace 2D # pretty self −descriptive , isn ' t i t ?
READ_MESH maze.msh

# boundary conditions ( default i s homogeneous Neumann)
BC start phi=0
BC end phi=1

SOLVE_PROBLEM

# write the norm of gradient as a scalar f ie ld
# and the gradient as a 2d vector into a .msh f i l e
WRITE_MESH maze-solved.msh \

sqrt(dphidx(x,y)^2+dphidy(x,y)^2) \
VECTOR dphidx dphidy 0

Let us break the WRITE_MESH instruction up. The resulting mesh name is maze-solved.msh. It cannot be the
same maze.msh we used as the input mesh.

Those aisles that go into dead ends are expected to have a very small gradient, while the aisles that lead to
the exit are expected to have a large gradient. The solution φ(x, y) is mapped into a function phi(x,y). Its
gradient

∇φ =
[

∂φ
∂x
∂φ
∂y

]
is mapped into two scalar functions, dphidx(x,y) and dphidy(x,y). So we write a scalar field with the mag-
nitude of the gradient ∇φ as sqrt(dphidx(x,y)^2+dphidy(x,y)^2)(remember that everything is an expression,
including the fields written in the post-processing files). We also write the gradient itself as a vector so we
can follow the arrows from the start down to the end.

$ feenox maze.fee
$

2024-01-15 / / 7dcff9f+dirty 10/16

https://seamplex.com/feenox/doc/feenox-manual.html#write_mesh


Solving mazes with PDEs instead of AI

That’s it. Remember the Unix rule of silence.

4 Results

Open maze-solved.msh with Gmsh:

gmsh maze-solved.msh

You should see something like this:

I bet you did not see the straightforward path that FeenoX found! Now we just need some make up to
make a nice social-network-worth picture. Let us create a file maze-fig.geo so Gmsh can scale everything
up for us:
Merge "maze-solved.msh";

Mesh.SurfaceFaces = 0;
Mesh.SurfaceEdges = 0;
General.SmallAxes = 0;

General.GraphicsHeight = 940;
General.GraphicsWidth = 1380;

View[0].ShowScale = 0;
View[0].RangeType = 2;
View[0].CustomMax = 0.008;
View[0].SaturateValues = 1;

View[1].ShowScale = 0;
View[1].CustomMax = 1e-2;
View[1].RangeType = 2;
View[1].GlyphLocation = 1; / / Glyph (arrow , number, etc . ) location (1 : center of gravity , 2 : node)

2024-01-15 / / 7dcff9f+dirty 11/16

https://www.seamplex.com/feenox/doc/tutorials/110-tensile-test/#sec:unix


Solving mazes with PDEs instead of AI

View[1].ArrowSizeMax = 20;

Print "maze-solved.png";
Exit;

$ gmsh maze-fig.geo
$

5 Transient Laplace

Use this transient input file for FeenoX, with the same mesh, to solve for the transient Laplace problem
going from top to down (i.e. td):

∇2φ = α
∂φ

∂t

2024-01-15 / / 7dcff9f+dirty 12/16



Solving mazes with PDEs instead of AI

PROBLEM laplace 2D
READ_MESH maze.msh

phi_0(x,y) = 0 # inital condition
end_time = 500 # some end time where we know we reached the steady−state
alpha = 1e-3 # factor of the time derivative to make i t advance faster
BC start phi=if(t<1,t,1) # a ramp from zero to avoid discontinuities with the in i t ia l condition
BC end phi=0 # homogeneous BC at the end ( so we move from top to bottom)

SOLVE_PROBLEM
PRINT t

WRITE_MESH maze-tran-td.msh phi sqrt(dphidx(x,y)^2+dphidy(x,y)^2) VECTOR -dphidx(x,y) -dphidy(x,y) 0

$ feenox maze-tran-td.fee
0
0.00736111
0.017873
0.0338879
0.0541553
[...]
390.125
419.195
450.667
475.333
500
$

So we have transient data in maze-tran-td.msh. Let’s create a video (or a GIF) out of it. Use this maze-tran ←↩

-td-anim.geo to create PNGs of each time step:
Merge "maze-tran-td.msh";

Mesh.SurfaceFaces = 0;
Mesh.SurfaceEdges = 0;
General.SmallAxes = 0;

General.GraphicsHeight = 1024;
General.GraphicsWidth = General.MenuWidth + 1024;

View[0].Visible = 0;

View[1].ShowScale = 0;
View[1].RangeType = 2;
View[1].CustomMax = 0.01;
View[1].SaturateValues = 1;

View[2].ShowScale = 0;
View[2].CustomMax = 0.005;
View[2].RangeType = 2;
View[2].GlyphLocation = 1; / / Glyph (arrow , number, etc . ) location (1 : center of gravity , 2 : node)
View[2].ArrowSizeMax = 20;

For step In {0:View[0].NbTimeStep-1}
View[1].TimeStep = step;
View[2].TimeStep = step;
Print Sprintf("maze-tran-td-%03g.png", step);
Draw;

EndFor

2024-01-15 / / 7dcff9f+dirty 13/16



Solving mazes with PDEs instead of AI

General.Terminal = 1;
Printf("# all frames dumped, now run");
Printf("ffmpeg -y -framerate 10 -f image2 -i maze-tran-td-%%03d.png maze-tran-td.mp4");
Printf("ffmpeg -y -framerate 10 -f image2 -i maze-tran-td-%%03d.png maze-tran-td.gif");
Exit;

$ gmsh maze-tran-td-anim.geo
# all frames dumped, now run
ffmpeg -y -framerate 10 -f image2 -i maze-tran-td-%03d.png maze-tran-td.mp4
ffmpeg -y -framerate 10 -f image2 -i maze-tran-td-%03d.png maze-tran-td.gif
$ sudo apt-get install ffmpeg
[...]
$ ffmpeg -y -framerate 10 -f image2 -i maze-tran-td-%03d.png maze-tran-td.mp4
[...]
$ ffmpeg -y -framerate 10 -f image2 -i maze-tran-td-%03d.png maze-tran-td.gif
[...]
$

6 Homework

1. Solve the bottom-up case.
2. Play with different types of mazes! What if you actually draw and scan one yourself?

2024-01-15 / / 7dcff9f+dirty 14/16



Solving mazes with PDEs instead of AI

Figure 3: Maze solved as a transient Laplace problem with FeenoX

2024-01-15 / / 7dcff9f+dirty 15/16



Solving mazes with PDEs instead of AI

(a) (b)

(c) (d)

Figure 4: Any arbitrary maze (even hand-drawn) can be solved with FeenoX

2024-01-15 / / 7dcff9f+dirty 16/16


	Foreword
	Executive summary

	Creating the mesh
	Solving the steady-state Laplace equation
	Results
	Transient Laplace
	Homework

